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Abstract 

The purpose of this paper is to study the characterizations of lock necks of single valued 

neutrosophic automaton (SVNA). We define local neck, monogenically directable, strongly 

directable, trap-directable, common directing word, uniformly monogenically (strongly) 

directable, uniformly monogenically (strongly) directable, locally direct able and -relation of 

single valued neutrosophic automaton. Further, we describe the properties of local necks of a 

SVNA. We show that if local exists in SVNA, then it is sub automaton of S and some equivalent 

conditions of S. 

1. Introduction 

In 1965 [23] Lofti A. Zadeh suggested Fuzzy’s theory of the set, which 

generalizes conventional set theory. The fuzzy set is a simple mathematical 

tool for representing the inherent vagueness, uncertainty, and imprecision in 

everyday life. W.G. used the fuzzy concept in automata in 1967, [22]. Later, 

many researchers applied the fuzzy concept in a variety of fields, and it has a 

wide range of applications. Doostfatemeh introduced general fuzzy automata 

in [4]. 
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Intuitionist fuzzy set, bipolar fuzzy set, vague set in different fields were 

therefore developed and applied. In 1998 [20], the concept of neutrosophy and 

neutrosophic set was further developed by F. Smarandache for the 

generalisation of all of the above-mentioned set. Subsequently, in [21], Wang 

et al. introduced single valued and interval valued neutrosophical sets. 

Neutrosophical systems have recently had significant applications in various 

fields, especially in decision making issues relating to multiple criteria. 

A single valued and interval neutroophical finite automates were 

introduced by Tahir Mahmoud et al. in [16]. Later on, neutrosophic general 

finite automata and neutrosophic composite finite automaton [14, 15] have 

been introduced by J. Kavikumar et al. Directable automata are also known 

as synchronizable and reset automata. It has numerous applications in a 

variety of fields. Many authors have contributed to the advancement of 

directable automata and generalized directable automata, among other 

things. T. Petkovic et al. [3] introduced and studied directable automata with 

necks, trap-directable, trapped, monogenically directable automata, and trap-

directable automata. Further, it is also studied by Z. Popovic et al. in [18] and 

[19]. M. Bogdanovic et al. [2] studied directable automata, and their 

generalizations. 

Decompositons automata and transition semigroups were studied by T. 

Petkovic et al. [17]. Also, necks and local necks of automata were discussed in 

[1] Consequently, necks of fuzzy automata was introduced and discussed in 

[5] and local necks of fuzzy automaton was discusses in [6]. Further 

directable fuzzy automata, -direct able fuzzy automata were discussed in [7, 

8]. Least directing congruence on fuzzy automata was discussed in [9]. 

Generalized direct able fuzzy automata and their characterizations was 

discussed in [11]. Also generalized products of -synchronized fuzzy 

automata, generalized products of direct able fuzzy automata were studied in 

the papers [12, 13]. Applications related to -synchronized fuzzy automata 

were studied in [10]. 

We define local neck, monogenically direct able, strongly directable, trap-

directable, common directing word, uniformly monogenically (strongly) 

directable, uniformly monogenically (strongly) direct able, locally direct able 

and -relation of single valued neutrosophic automaton. Further, we describe 
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the properties of local necks of a SVNA. We show that if local exists in SVNA, 

then it is sub automaton of S and some equivalent conditions of S. 

2. Preliminaries 

2.1. Neutrosophic Set [20]. Let E be the universal set. A neutrosophic 

set (NS) T in E is classified by a truth ,T  indeterminacy T  and a falsity 

membership ,T  where ,, TT   and T  are real standard or non-standard 

subsets of  .1,0    

          1,0,,,,,,, TTTTTT EeeeeeT   and 

      .3supsupsup0   eee TTT   We use  1,0  instead of 

 .1,0   

2.2 Single Valued Neutrosophic Set [21]. Let E be the universe of 

discourse. A single valued neutrosophic set (SVNS) T in E is classified by a 

truth ,T  indeterminacy T  and a falsity membership .T  

         .1,0,,,,,,,  TTTTTN EeeeeeT    

2.3. Definition [16].  TIDS ,,  is called single valued neutrosophic 

automaton (SV NA for short); where D and I are non-empty set of states and 

input symbols respectively, and         eeeeT TTT  ,,,   is an SV NS in 

.DID   The set of all words of I is denoted by .I  The empty word is 

denoted by , and the length of each  Ie  is denoted by .e  

2.4 Definition [16].  TIDS ,,  be an SVNA. Define an SV NS 

        eeeeT TTT  ,,,    in DID    by  

 







 

ji

ji
jiT dd

dd
dd

 if0

 if1
,,  

 









ji

ji
jiT dd

dd
dd

 if1

 if0
,,  
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 







 

ji

ji
jiT dd

dd
dd

 if1

 if0
,,  

      ,,,,,,, jrTriTDqjiT
deqqeddeed

r
    

      ,,,,,,, jrTriTDqjiT
deqqeddeed

r
     

       
   IeDdddeqqeddeed jijrTriTDqjiT r

,,,,,,,,,  

and .Ie   

3. Local Necks of Single Valued Neutrosophic Automata 

3.1 Definition. Let  TIDS ,,  be an SVNA and .Ddi   If id  is 

called local neck of S. If it is neck of some directable sub automaton of S. The 

collection of all local necks of S is denoted by  .SLN  

3.2 Definition. Let  TIDS ,,  be SVNA. If S is called monogenically 

directable if every monogenic sub automaton of S is directable. 

3.3 Definition. Let  TIDS ,,  be SVNA. If S is called monogenically 

strongly direct able then all monogenic sub automaton directable if every 

monogenic sub automaton of S is strongly direct able. 

3.4 Definition. Let  TIDS ,,  be SVNA. If S is called monogenically 

trap-direct able if every monogenic sub automaton of S has a single neck. 

3.5 Definition. Let  TIDS ,,  be SVNA. If  Iz  is said to be 

common directing word of S then z is a directing word of every monogenic sub 

automaton of S. The collection of all common directing words of S will be 

denoted by  .SCDW  In other words,    .iDq dDWMCDW
i

   

3.6 Definition. Let  TIDS ,,  be SVNA. S is called uniformly 

monogenically (strongly) directable SVNA if every monogenic sub automaton 

of S is (strongly) directable and have at least one common directing word. 

3.7 Definition. Let  TIDS ,,  be SVNA. S is called uniformly 

monogenically trap- direct able SVNA if every monogenic sub automaton of S 

is has a single neck and have at least one common directing word. 
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3.8 Definition. Let  TIDS ,,  be SVNA. A subset K of semi group J 

is called an ideal if .IJKJ   

3.9 Locally Direct able. Let  TIDS ,,  be SVNA. S is called locally 

directable SVNA if each finitely generated sub automaton of S is directable 

SVNA. 

3.10 -Relation. We define a relation  on states set of an arbitrary 

SVNA  TIDS ,,  as follows: 

Let ., Ddd ji      .jiji dNdNdd    

This relation is clearly an equivalence relation. 

4. Properties of Local Necks of Single Valued Neutrosophic Automata 

Theorem 4.1. Let  TIDS ,,  be SVNA and .Ddi   Then the 

following conditions are equivalent.  

(i) id  is local neck of SVNA. 

(ii) id  is a strongly directable SVNA. 

(iii)   IzIz ,  such that    iiTiiT
dzzddzzd ,,,0,,     

  .1,,,1   iiT
dzzd   

Proof. 

   iii    

Let id  be a local neck of S. Then  a directable sub automaton S  of S 

such that  .SNdi   Thus  SN   is a strongly direct able SVNA. Also, 

 SNdi   and  SN   is strongly connected, then  .SNdi   Therefore, 

id2  is a strongly directable SVNA. 

   iiii   

Let id  be a strongly directable SVNA. Then id  is a z-neck of id  for 

some . Iz  Since id  is strongly directable SVNA  Iz  there exists 
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some il dd   such that     ,1,,,0,,   liTliT
dzddzd   

  .1,,   liT
dzd   

       ,0,,,,,,,    ilTliTDdiiT
dzddzddzzd

l
 

       ,1,,,,,,,    ilTliTDdiiT
dzddzddzzd

l
  

       ,1,,,,,,,    ilTliTDdiiT
dzddzddzd

l
 

   iii   

It clearly shows that id  is a z-neck of ,iq  thus it is a local neck of S. 

Theorem 4.2. Let  TIDS ,,  be SVNA.   SLN  then  SLN  is 

sub automaton of S. 

Proof. Let  SLNdi   and .Iy   Then the monogenic sub automaton 

id  of S is strongly directable.     ,1,,,0,,   liTliT
dyddyd   

  1,,   liT
dyd  for some .ii dd   Since id  is strongly connected, 

.li dd   Thus, ld  is also a local neck of S.  .SLNdl   Hence,  SLN  is a 

sub automaton of S. 

Theorem 4.3. Let  TIDS ,,  be SVNA and S  be a sub automaton of 

S. Then     .SSLNSLN     

Proof. Let  .SLNdi   Then  a sub automaton S   of S  such that 

 .SNqi   But S   is also sub automaton of S,  .SLNdi   Thus, 

    .SSLNSLN     

Conversely, assume   .SSLNdi    Then  ,1SNdi   for some 

directable sub automaton 1S  of S. Let .1SSS    Then S   is a sub 

automaton of 1S  and .S   Also, S   is directable and    .1SNSN   It 

follows that  .SNdi   Thus  .SLNdi   Therefore,    .SLNSSLN   

Hence     .SSLNSLN    

Theorem 4.4. Let  TIDS ,,  be SVNA. Then the following conditions 

are equivalent: 
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(i) Each state of D in S is a local neck; 

(ii) S is monogenically strongly directable SVNA; 

(iii) S is monogenically directable and reversible SVNA; 

(iv) S is a direct sum of strongly directable SVNA; 

(v)        IzIzDdi  such that    
TiiT

dzzd ,0,,  

    .1,,,1,,   iiTii dzzddzzd   

Proof. 

   iii   

If each state Ddi   is a local neck of S. Then for each Ddi   the 

monogenic sub automaton id  of D in S is strongly directable. 

Hence, S is monogenically strongly directable SVNA. 

   iiiii    

If S is monogenically strongly detectable SVNA, then it is monogenically 

directable SVNA. Suppose each monogenic sub automaton of S is strongly 

connected SVNA, then S is reversible SVNA. 

   iviii   

If S is reversible SVNA, then it is a direct sum of strongly connected 

SVNA YS  ,  and . Ddi  Then . Sdi  Since S  is strongly 

connected SVNA, and by the monogenic directability of S we have idS   

is directable SVNA. Therefore, S  is strongly directable SVNA, for any 

.Y  

   iiv   

Let S be a direct sum of strongly directable SVNA ., YS   Then for 

each ,Ddi   there exists Y  such that . Ddi  Thus  ,  SNSdi  

so id  is a local neck of S. 

   vi   
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Since, each Ddi   of S is a local neck. Then for any ii dDd ,  is 

monogenically strongly directable SVNA. Hence, id  is reversible SVNA. 

   iv    

This statement implies that each Ddi   of S is a local neck. 

Theorem 4.5. Let S  be an arbitrary -class of a SVNA S. Then one of 

the following conditions hold. 

(i)     ii dNDdS |   

(ii) S  is a locally direct able sub automaton of S. 

Proof. Suppose that (i) does not hold. Then there exists a strongly 

directable sub automaton 1S  of S such that   .,1 SdSdN ii    

Consider an arbitrary .Sdi   Then   .idN  It means that id  is a 

directable SVNA. Now, for each DdIy l  ,  such that  liT
dyd ,,  

    .1,,,1,,,0   liTliT
dyddyd  It means that id  is a directable 

SVNA and    ii dNdN   where    liTliT
dyddyd ,,,0,,     

  .1,,,1   liT
dyd  Hence, .Sdi   Thus, S   is a sub automaton of S. 

It remains to prove that S   is a locally directable SVNA. 

Let Sddd n ,,, 21   and .1Sdk   For every    ,,,1 1 idNSni    

so  ii dDWz   such that     ,1,,,0,,   kiiTkiiT
dzddzd   

  1,,   kiiT
dzd  for each .ii dd   

Now, set nzzzz 21  and consider arbitrary  ,,1 ni   and .ii dd   

Since  idDW  is an ideal of I  then  .idDWz   

Now,  

    ,0,,0,, 21   kniTkiT
dzzzddzd   

    ,1,,1,, 21   kniTkiT
dzzzddzd   
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    ,1,,1,, 21   kniTiiT
dzzzddzd   

Since ,,,, 121 i
n
in dddd   and conclude that  .,,, 21 ndddDWz   

Thus, nddd ,,, 21   is a directable SVNA with  ,,,, 121 SdddN n   so 

S  is a locally directable SVNA.  

5. Conclusion 

We study SVNA using necks. We define neck, directable, trap, trap-

directable, reverse state of SVNA. Further, we describe the properties of 

necks and give new structural characterizations of a directable single valued 

neutrosophic automaton. We prove the set of necks of SVNA is the least sub 

automaton and it is also a reversible SVNA. Also, we prove a SVNA is 

strongly directable iff it is strongly connected and directable SVNA. 

Consequently, we prove a directable SVNA is an extension of a strongly 

directable SVNA by a trap-directable SVNA. 
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