

LOCAL NECKS OF SINGLE VALUED NEUTROSOPHIC AUTOMATA

MOHANARAO NAVULURI and V. KARTHIKEYAN

Department of Mathematics Government College of Engineering Bodinayakkanur, Tamil Nadu, India E-mail: mohanaraonavuluri@gmail.com

Department of Mathematics Government College of Engineering Dharmapuri, Tamilnadu, India E-mail: vkarthikau@gmail.com

Abstract

The purpose of this paper is to study the characterizations of lock necks of single valued neutrosophic automaton (SVNA). We define local neck, monogenically directable, strongly directable, trap-directable, common directing word, uniformly monogenically (strongly) directable, uniformly monogenically (strongly) directable, locally direct able and ω -relation of single valued neutrosophic automaton. Further, we describe the properties of local necks of a SVNA. We show that if local exists in SVNA, then it is sub automaton of *S* and some equivalent conditions of *S*.

1. Introduction

In 1965 [23] Lofti A. Zadeh suggested Fuzzy's theory of the set, which generalizes conventional set theory. The fuzzy set is a simple mathematical tool for representing the inherent vagueness, uncertainty, and imprecision in everyday life. W.G. used the fuzzy concept in automata in 1967, [22]. Later, many researchers applied the fuzzy concept in a variety of fields, and it has a wide range of applications. Doostfatement introduced general fuzzy automata in [4].

Received June 15, 2021; Accepted September 15, 2021

²⁰²⁰ Mathematics Subject Classification: 03D05, 20M35, 18B20, 68Q45, 68Q70, 94A45. Keywords: Single Valued Neutrosophic Automaton (SVNA), Neck, Direct able, Trap, Trap-direct able of SVNA.

2428 MOHANARAO NAVULURI and V. KARTHIKEYAN

Intuitionist fuzzy set, bipolar fuzzy set, vague set in different fields were therefore developed and applied. In 1998 [20], the concept of neutrosophy and neutrosophic set was further developed by F. Smarandache for the generalisation of all of the above-mentioned set. Subsequently, in [21], Wang et al. introduced single valued and interval valued neutrosophical sets. Neutrosophical systems have recently had significant applications in various fields, especially in decision making issues relating to multiple criteria.

A single valued and interval neutroophical finite automates were introduced by Tahir Mahmoud et al. in [16]. Later on, neutrosophic general finite automata and neutrosophic composite finite automaton [14, 15] have been introduced by J. Kavikumar et al. Directable automata are also known as synchronizable and reset automata. It has numerous applications in a variety of fields. Many authors have contributed to the advancement of directable automata and generalized directable automata, among other things. T. Petkovic et al. [3] introduced and studied directable automata with necks, trap-directable, trapped, monogenically directable automata, and trapdirectable automata. Further, it is also studied by Z. Popovic et al. in [18] and [19]. M. Bogdanovic et al. [2] studied directable automata, and their generalizations.

Decompositons automata and transition semigroups were studied by T. Petkovic et al. [17]. Also, necks and local necks of automata were discussed in [1] Consequently, necks of fuzzy automata was introduced and discussed in [5] and local necks of fuzzy automaton was discusses in [6]. Further directable fuzzy automata, μ -direct able fuzzy automata were discussed in [7, 8]. Least directing congruence on fuzzy automata was discussed in [9]. Generalized direct able fuzzy automata and their characterizations was discussed in [11]. Also generalized products of Δ -synchronized fuzzy automata, generalized products of direct able fuzzy automata were studied in the papers [12, 13]. Applications related to γ -synchronized fuzzy automata were studied in [10].

We define local neck, monogenically direct able, strongly directable, trapdirectable, common directing word, uniformly monogenically (strongly) directable, uniformly monogenically (strongly) direct able, locally direct able and ω -relation of single valued neutrosophic automaton. Further, we describe

the properties of local necks of a SVNA. We show that if local exists in SVNA, then it is sub automaton of S and some equivalent conditions of S.

2. Preliminaries

2.1. Neutrosophic Set [20]. Let *E* be the universal set. A neutrosophic set (NS) *T* in *E* is classified by a truth χ_T , indeterminacy ψ_T and a falsity membership τ_T , where χ_T , ψ_T , and τ_T are real standard or non-standard subsets of $]0^-, 1^+[$.

$$T = \{ \langle e, (\chi_T(e), \psi_T(e), \tau_T(e)) \rangle, e \in E, \chi_T, \psi_T, \tau_T \in \left] 0^-, 1^+ \right[\} \text{ and } 0^- \leq \sup \chi_T(e) + \sup \psi_T(e) + \sup \tau_T(e) \leq 3^+. \text{ We use } [0, 1] \text{ instead of }] 0^-, 1^+ \left[. \right]$$

2.2 Single Valued Neutrosophic Set [21]. Let *E* be the universe of discourse. A single valued neutrosophic set (SVNS) *T* in *E* is classified by a truth χ_T , indeterminacy ψ_T and a falsity membership τ_T . $T = \{ \langle e, (\chi_N(e), \psi_T(e), \tau_T(e)) \rangle, e \in E, \chi_T, \psi_T, \tau_T \in [0, 1] \}.$

2.3. Definition [16]. S = (D, I, T) is called single valued neutrosophic automaton (SV NA for short); where D and I are non-empty set of states and input symbols respectively, and $T = \{\langle e, (\chi_T(e), \psi_T(e), \tau_T(e)) \rangle\}$ is an SV NS in $D \times I \times D$. The set of all words of I is denoted by I^* . The empty word is denoted by λ , and the length of each $e \in I^*$ is denoted by |e|.

2.4 Definition [16]. S = (D, I, T) be an SVNA. Define an SV NS $T^* = \{ \langle e, (\chi_T(e), \psi_T(e), \tau_T(e)) \rangle \}$ in $D \times I^* \times D$ by

$$\begin{split} \chi_{T^*}(d_i,\,\lambda,\,d_j) &= \begin{cases} 1 & \text{if } d_i = d_j \\ 0 & \text{if } d_i \neq d_j \end{cases} \\ \psi_{T^*}(d_i,\,\lambda,\,d_j) &= \begin{cases} 0 & \text{if } d_i = d_j \\ 1 & \text{if } d_i \neq d_j \end{cases} \end{split}$$

$$\begin{split} \tau_{T^*}(d_i,\,\lambda,\,d_j) &= \begin{cases} 0 & \text{if } d_i = d_j \\ 1 & \text{if } d_i \neq d_j \end{cases} \\ \chi_{T^*}(d_i,\,ee',\,d_j) &= \lor_{q_r \in D} [\chi_{T^*}(d_i,\,e,\,q_r) \land \chi_{T^*}(q_r,\,e',\,d_j)], \\ \psi_{T^*}(d_i,\,ee',\,d_j) &= \land_{q_r \in D} [\psi_{T^*}(d_i,\,e,\,q_r) \lor \psi_{T^*}(q_r,\,e',\,d_j)], \\ \tau_{T^*}(d_i,\,ee',\,d_j) &= \land_{q_r \in D} [\tau_{T^*}(d_i,\,e,\,q_r) \lor \tau_{T^*}(q_r,\,e',\,d_j)], \forall d_i,\,d_j \in D, \, e \in I \\ \text{and } e' \in I. \end{split}$$

3. Local Necks of Single Valued Neutrosophic Automata

3.1 Definition. Let S = (D, I, T) be an SVNA and $d_i \in D$. If d_i is called local neck of S. If it is neck of some directable sub automaton of S. The collection of all local necks of S is denoted by LN(S).

3.2 Definition. Let S = (D, I, T) be SVNA. If S is called monogenically directable if every monogenic sub automaton of S is directable.

3.3 Definition. Let S = (D, I, T) be SVNA. If S is called monogenically strongly direct able then all monogenic sub automaton directable if every monogenic sub automaton of S is strongly direct able.

3.4 Definition. Let S = (D, I, T) be SVNA. If S is called monogenically trap-direct able if every monogenic sub automaton of S has a single neck.

3.5 Definition. Let S = (D, I, T) be SVNA. If $z \in I^*$ is said to be common directing word of S then z is a directing word of every monogenic sub automaton of S. The collection of all common directing words of S will be denoted by CDW(S). In other words, $CDW(M) = \bigcap_{q_i \in D} DW(\langle d_i \rangle)$.

3.6 Definition. Let S = (D, I, T) be SVNA. S is called uniformly monogenically (strongly) directable SVNA if every monogenic sub automaton of S is (strongly) directable and have at least one common directing word.

3.7 Definition. Let S = (D, I, T) be SVNA. S is called uniformly monogenically trap- direct able SVNA if every monogenic sub automaton of S is has a single neck and have at least one common directing word.

3.8 Definition. Let S = (D, I, T) be SVNA. A subset K of semi group J is called an ideal if $JKJ \subseteq I$.

3.9 Locally Direct able. Let S = (D, I, T) be SVNA. S is called locally directable SVNA if each finitely generated sub automaton of S is directable SVNA.

3.10 \omega-Relation. We define a relation ω on states set of an arbitrary SVNA S = (D, I, T) as follows:

Let $d_i, d_j \in D$. $d_i \omega d_j \Leftrightarrow N(\langle d_i \rangle) = N(\langle d_j \rangle)$.

This relation is clearly an equivalence relation.

4. Properties of Local Necks of Single Valued Neutrosophic Automata

Theorem 4.1. Let S = (D, I, T) be SVNA and $d_i \in D$. Then the following conditions are equivalent.

(i) d_i is local neck of SVNA.

(ii) $\langle d_i \rangle$ is a strongly directable SVNA.

(iii) $\forall z \in I^*, \exists z' \in I^*$ such that $\chi_{T^*}(d_i, zz', d_i) > 0, \psi_{T^*}(d_i, zz', d_i) < 1, \tau_{T^*}(d_i, zz', d_i) < 1.$

Proof.

 $(i) \Rightarrow (ii)$

Let d_i be a local neck of S. Then \exists a directable sub automaton S' of S such that $d_i \in N(S')$. Thus N(S') is a strongly direct able SVNA. Also, $\langle d_i \rangle \subseteq N(S')$ and N(S') is strongly connected, then $\langle d_i \rangle = N(S')$. Therefore, $\langle 2d_i \rangle$ is a strongly directable SVNA.

 $(ii) \Rightarrow (ii)$

Let $\langle d_i \rangle$ be a strongly directable SVNA. Then $\langle d_i \rangle$ is a z-neck of $\langle d_i \rangle$ for some $z \in I^*$. Since $\langle d_i \rangle$ is strongly directable SVNA $\forall z' \in I^*$ there exists

2432

some $d_l \in \langle d_i \rangle$ such that $\chi_{T^*}(d_i, z', d_l) > 0, \psi_{T^*}(d_i, z', d_l) < 1,$ $\tau_{T^*}(d_i, z', d_l) < 1.$ $\chi_{T^*}(d_i, z'z, d_i) = \wedge_{d_l \in D} \{\chi_{T^*}(d_i, z', d_l), \chi_{T^*}(d_l, z, d_i) > 0\},$ $\psi_{T^*}(d_i, z'z, d_i) = \vee_{d_l \in D} \{\psi_{T^*}(d_i, z', d_l), \psi_{T^*}(d_l, z, d_i) < 1\},$ $\tau_{T^*}(d_i, z', d_i) = \vee_{d_l \in D} \{\tau_{T^*}(d_i, z', d_l), \tau_{T^*}(d_l, z, d_i) < 1\},$ $(ii) \Rightarrow (i)$

It clearly shows that d_i is a z-neck of $\langle q_i \rangle$, thus it is a local neck of S.

Theorem 4.2. Let S = (D, I, T) be SVNA. $LN(S) \neq \phi$ then LN(S) is sub automaton of S.

Proof. Let $d_i \in LN(S)$ and $y \in I$. Then the monogenic sub automaton $\langle d_i \rangle$ of S is strongly directable. $\chi_{T^*}(d_i, y, d_l) > 0, \psi_{T^*}(d_i, y, d_l) < 1$, $\tau_{T^*}(d_i, y, d_l) < 1$ for some $d_i \in \langle d_i \rangle$. Since $\langle d_i \rangle$ is strongly connected, $\langle d_i \rangle = \langle d_l \rangle$. Thus, d_l is also a local neck of S. $d_l \in LN(S)$. Hence, LN(S) is a sub automaton of S.

Theorem 4.3. Let S = (D, I, T) be SVNA and S' be a sub-automaton of S. Then $LN(S') = LN(S) \cap S'$.

Proof. Let $d_i \in LN(S')$. Then \exists a sub automaton S'' of S' such that $q_i \in N(S'')$. But S'' is also sub automaton of S, $d_i \in LN(S)$. Thus, $LN(S') \subseteq LN(S) \cap S'$.

Conversely, assume $d_i \in LN(S) \cap S'$. Then $d_i \in N(S'_1)$, for some directable sub automaton S'_1 of S. Let $S'' = S' \cap S'_1$. Then S'' is a sub automaton of S'_1 and S'. Also, S'' is directable and $N(S'') = N(S'_1)$. It follows that $d_i \in N(S'')$. Thus $d_i \in LN(S')$. Therefore, $LN(S) \cap S' \subseteq LN(S')$. Hence $LN(S') = LN(S) \cap S'$.

Theorem 4.4. Let S = (D, I, T) be SVNA. Then the following conditions are equivalent:

(i) Each state of D in S is a local neck;

(ii) S is monogenically strongly directable SVNA;

(iii) S is monogenically directable and reversible SVNA;

(iv) S is a direct sum of strongly directable SVNA;

(v) $(\forall d_i \in D) (\exists z \in I^*) (\forall z' \in I^*)$ such that $\chi_{T^*}(d_i, z'z, d_i) > 0, \psi_{T^*}(d_i, z'z, d_i) < 1, \rho_{T^*}(d_i, z'z, d_i) < 1.$

Proof.

 $(i) \Rightarrow (ii)$

If each state $d_i \in D$ is a local neck of S. Then for each $d_i \in D$ the monogenic sub automaton $\langle d_i \rangle$ of D in S is strongly directable.

Hence, S is monogenically strongly directable SVNA.

 $(ii) \Rightarrow (iii)$

If S is monogenically strongly detectable SVNA, then it is monogenically directable SVNA. Suppose each monogenic sub automaton of S is strongly connected SVNA, then S is reversible SVNA.

 $(iii) \Rightarrow (iv)$

If S is reversible SVNA, then it is a direct sum of strongly connected SVNA $S_{\alpha}, \alpha \in Y$ and $d_i \in D_{\alpha}$. Then $\langle d_i \rangle = S_{\alpha}$. Since S_{α} is strongly connected SVNA, and by the monogenic directability of S we have $S_{\alpha} = \langle d_i \rangle$ is directable SVNA. Therefore, S_{α} is strongly directable SVNA, for any $\alpha \in Y$.

 $(iv) \Rightarrow (i)$

Let S be a direct sum of strongly directable SVNA S_{α} , $\alpha \in Y$. Then for each $d_i \in D$, there exists $\alpha \in Y$ such that $d_i \in D_{\alpha}$. Thus $d_i \in S_{\alpha} = N(S_{\alpha})$, so d_i is a local neck of S.

 $(i) \Rightarrow (v)$

Since, each $d_i \in D$ of S is a local neck. Then for any $d_i \in D$, $\langle d_i \rangle$ is monogenically strongly directable SVNA. Hence, $\langle d_i \rangle$ is reversible SVNA.

 $(v) \Rightarrow (i)$

This statement implies that each $d_i \in D$ of S is a local neck.

Theorem 4.5. Let S' be an arbitrary ω -class of a SVNA S. Then one of the following conditions hold.

- (i) $S' = \{d_i \in D \mid N(\langle d_i \rangle) = \phi\}$
- (ii) S' is a locally direct able sub automaton of S.

Proof. Suppose that (i) does not hold. Then there exists a strongly directable sub automaton S_1 of S such that $N(\langle d_i \rangle) = S_1$, $\forall d_i \in S'$.

Consider an arbitrary $d_i \in S'$. Then $N(\langle d_i \rangle) \neq \phi$. It means that $\langle d_i \rangle$ is a directable SVNA. Now, for each $y \in I$, $\exists d_l \in D$ such that $\chi_{T^*}(d_i, y, d_l) > 0$, $\psi_{T^*}(d_i, y, d_l) < 1$, $\tau_{T^*}(d_i, y, d_l) < 1$. It means that $\langle d_i \rangle$ is a directable SVNA and $N(\langle d_i \rangle) = N(\langle d_i \rangle)$ where $\chi_{T^*}(d_i, y, d_l) > 0$, $\psi_{T^*}(d_i, y, d_l) < 1$. Hence, $d_i \in S'$. Thus, S' is a sub automaton of S.

It remains to prove that S' is a locally directable SVNA.

Let $d_1, d_2, \ldots, d_n \in S'$ and $d_k \in S_1$. For every $i \in [1, n]$, $S_1 = N(\langle d_i \rangle)$, so $\exists z_i \in DW(\langle d_i \rangle)$ such that $\chi_{T^*}(d_i, z_i, d_k) > 0$, $\psi_{T^*}(d_i, z_i, d_k) < 1$, $\tau_{T^*}(d_i, z_i, d_k) < 1$ for each $d_i \in \langle d_i \rangle$.

Now, set $z = z_1 z_2 \dots z_n$ and consider arbitrary $i \in [1, n]$, and $d_i \in \langle d_i \rangle$. Since $DW(\langle d_i \rangle)$ is an ideal of I^* then $z \in DW(\langle d_i \rangle)$.

Now,

$$\begin{split} &\chi_{T^*}(d_i,\,z,\,d_k) > 0 = \chi_{T^*}(d_i,\,z_1z_2\ldots z_n,\,d_k) > 0, \\ &\psi_{T^*}(d_i,\,z,\,d_k) < 1 = \psi_{T^*}(d_i,\,z_1z_2\ldots z_n,\,d_k) < 1, \end{split}$$

$$\tau_{T^*}(d_i, \, z, \, d_i) < 1 = \tau_{T^*}(d_i, \, z_1 z_2 \dots z_n, \, d_k) < 1,$$

Since $\langle d_1, d_2, ..., d_n \rangle = \bigcup_{i=1}^n \langle d_i \rangle$, and conclude that $z \in DW(\langle d_1, d_2, ..., d_n \rangle)$. Thus, $\langle d_1, d_2, ..., d_n \rangle$ is a directable SVNA with $N(\langle d_1, d_2, ..., d_n \rangle) = S_1$, so S' is a locally directable SVNA.

5. Conclusion

We study SVNA using necks. We define neck, directable, trap, trapdirectable, reverse state of SVNA. Further, we describe the properties of necks and give new structural characterizations of a directable single valued neutrosophic automaton. We prove the set of necks of SVNA is the least sub automaton and it is also a reversible SVNA. Also, we prove a SVNA is strongly directable iff it is strongly connected and directable SVNA. Consequently, we prove a directable SVNA is an extension of a strongly directable SVNA by a trap-directable SVNA.

References

- M. Bogdanovic, S. Bogdanovic, M. Ciric and T. Petkovic, Necks of automata, Novi Sad J. Math. 34(2) (2004), 5-15.
- [2] M. Bogdanovic, B. Imreh, M. Ciric and T. Petkovic, Directable automata and their Generalization (A Survey), Novi Sad J. Math. 29(2) (1999), 31-74.
- [3] S. Bogdanovic, M. Ciric and T. Petkovic, Directable automata and Transition Semigroups, Acta Cybernetica (Szeged) 13 (1998), 385-403.
- [4] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning 38 (2005), 175-214.
- [5] V. Karthikeyan and M. Rajasekar, Necks of fuzzy automata, Proceedings of International Conference on Mathematical Modeling and Applied Soft Computing, Shanga Verlag July (11-13) (2012), 15-320.
- [6] V. Karthikeyan and M. Rajasekar, Local Necks of fuzzy automata, Advances in Theoretical and Applied Mathematics 7(4) (2012), 393-402.
- [7] V. Karthikeyan and M. Rajasekar, Directable fuzzy automata, International Journal of Computer Applications 125(8) (2015), 1-4.
- [8] V. Karthikeyan and M. Rajasekar, μ-Directable fuzzy automata, J. Math. Comp. Sci. 2(3) (2012), 462-472.
- [9] V. Karthikeyan and M. Rajasekar, Least directing congruence on fuzzy automata, Annals of Fuzzy Mathematics and Informatics 12(6) (2016), 767-780.

2436 MOHANARAO NAVULURI and V. KARTHIKEYAN

- [10] V. Karthikeyan and M. Rajasekar, γ-Synchronized fuzzy automata and their applications, Annals of Fuzzy Mathematics and Informatics 10(2) (2015), 331-342.
- [11] V. Karthikeyan and M. Rajasekar, Generalized directable fuzzy automata, International Journal of Computer Applications 131(12) (2015), 1-5.
- [12] N. Mohanarao and V. Karthikeyan, Generalized products of Δ-synchronized fuzzy automata, Journal of Mathematical and Computational Science 11(3) (2021), 3151-3154.
- [13] V. Karthikeyan, N. Mohanarao and S. Sivamani, Generalized products of directable fuzzy automata, Material Today: Proceedings 37 (2021), 3531-3533.
- [14] J. Kavikumar, D. Nagarajan, Said Broumi, F. Smarandache, M. Lathamaheswari and Nur Ain Ebas Neutrosophic General Finite Automata, Neutrosophic Sets and Systems 27 (2019), 17-34.
- [15] J. Kavikumar, D. Nagarajan, S. P. Tiwari, Said Broumi and F. Smarandache, Composite Neutrosophic Finite Automata, Neutrosophic Sets and Systems 36 (2020), 282-291.
- [16] T. Mahmood, Q. Khan, K. Ullah, and N. Jan. Single valued neutrosophic finite state machine and switch board state machine, New Trends in Neutrosophic Theory and Applications II (2018), 384-402.
- [17] T. Petkovic, M. Ciric and S. Bogdanovic, Decompositions of Automata and Transition Semigroups, Acta Cybernetica., (Szeged) 13 (1998), 385-403.
- [18] Z. Popovic, S. Bogdanovic, T. Petkovic and M. Ciric., Trapped Automata, Publ. Math. Debreen 60(3-4) (2002), 661-667.
- [19] Z. Popovic, S. Bogdanovic, T. Petkovic and M. Ciric., Generalized Directable Automata, Words, Languages and Combinatories.III. Proceedings of the Third International Colloquium in Kyoto, Japan, (M. Ito and T. Imaka, eds.), World Scientific (2003), 378-395.
- [20] F. Smarandache, A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, set and Logic, Re hoboth: American Research Press, (1998).
- [21] F. Smarandache, H. Wang, Y. Q. Zhang and R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure 4 (2010), 410-413.
- [22] W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification, Ph.D. Thesis, Purdue University, 1967.
- [23] L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.