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Abstract

In this paper an M/M/1/K interdependent queueing model with vacation and

controllable arrival rates is considered. The steady state solutions of the model are derived.

Numerical examples and graphical analysis are given for better understanding.
1. Introduction

In this paper we consider a queueing model where server takes vacation
and the arrival rate is controlled. Earlier, both A. Srinivasan and M.

Thiagarajan [5] having studied about M/M/1/K interdependent queueing

model with controllable arrival rates.

In some situation, an idle server will start some other uninterruptible
tasks which is referred to as a vacation period’. For a comprehensive and
complete review on vacation queueing systems, we refer the readers to Doshi
(1986) [1], Ke et al. (2010) [2] and Shweta Upadhyaya [3]. Further B. Deepa
and K. Kalidass [4] have analysed an M/M/1/N queue with working

breakdowns and vacations. Many other similar models also have appeared.
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These models are useful in computer communication system.
2. Model Description

The arrival process and the service process are {X;(t)}, {Xa(t)}

respectively are correlated and follow a bivariate Poisson process given by

P[X;() = %1, Xo(t) = xo]

_ o (hitn—e)t min (x1, %) jre NRif YRR 1
e Zj=0 (gt) [(7‘1, S)t] [(}'l 8)] ]y (xl _ _])' (x2 _ ])7 (1)

where x1, x9 =0,1,2,...;4; >0,i=0,1,p>0,0< g <min(A;, n), i =0, 1.
(1) Here, we consider a single server queueing system with parameter

Lo -Mean faster rate of arrivals
A1 -Mean slower rate of arrivals

p-Mean service rate
e-Mean dependence rate
v-Vacation rate

(2) When the system size increases to R from below the arrival rate which
was Ap until R -1, decreases to A; and remains same for subsequent
upward movement of the system size.

(3) When the system size decreases to r from above, the arrival rate which
was Ay until r+1, increases to Ay and remains same for subsequent
downward movement to 0 and upward movement up to R — 1. This process is
repeated.

(4) The states for the model are as follows:

(@) (0, i) is the state in which there are i customers in the queue and the

server is in vacation, ¢ > 0. Its probability is P ;.

(b) (1, i) is the state in which there are i customers in the system during

active service, i > 1. Its probability is P, ;.
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3. Steady State Equations

We observe that only P, ;(0) and P, ;(0) exists when n=0,1,2, ...,
r—=1,r; Py ;(0), P ;(0), Py ;(1), P, ;(1) exists when n=r+1,r+2,..., R—-1
and Py ;(0) and P, ;(0) exists only when n = R, R+1, ..., K.

Further PO,i(O) = 1)171(0) = PO,i(]-) = 1)1,1(1) =01ifn> K.

(o - €)Fo,0(0) = (n - 8)P;,1(0) @

(o +v—e)Py ;(0) = (hg — )P ; 1 (0% (i =1, 2, ..., R-1) 3)
( +v =Py ;1) = (A - )P, (G =r+1, ..., K) e
(Ao + 1 —28)P1,1(0) = (n - )Py, 2(0) + vFy,1 (0) ®)

(Ao +1=28)P ;(0) = (ho — &)P ;1 (1) + (n — &)y, ;41(0) + vFy ; (1);
(=23, ..,r-1) (6)
(Ao + 1 —28)P ,(0) = (ho = &)P ,1(1) + (= &)P 11(0) + (- €)P ;11(1)
+ Py (1) (7

(Mo + 1 —=26)P ;(0) = (o — €)1, ;-1(0) + (1 — &)P1, 1.1 (0) + vFy ;(0);

(i=r+1,..,R-2) (8
(ho +u—28)P; p_1(1) = (Ao — €)P, p_2(0) + vPy r_1(0); )
(M +1u=28)P ,11(1) = (W= )P ,19(1) + VP ;41 (1); (10)

(g +u=2e)P (1) = (W= e)P ;1 (1) + (Mg — €)P ;1 (1) + vPy ;(1);
G=r+2 ., R-1) (1)
(M +n—-28)P g(1) = (0~ &)P pe1 (1) + (A — &)P g1 (1) + (ho — &), p—1(0) +

UPO,R(l); (12)
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(M +1u-2¢)P (1) = (w—€)P ;11 (1) + (g — )P ;1 (1) + vFp ;(1);

(=R+1,..,K-1) (13)
(n-e)P k(1) = (A — )P, g1 (1) + vPy, g (1); (14)
Let
_}\.0—8 _7\,1—8 _ U _ A _ B
A= [T » B = - ’C_u—a’D_A+C’E_B+C

From equation (2) we derive

P, 1(0) = APy ((0) (15)

And from equation (3) we recursively get
R-1 R-1
ZPO,,L(O) = ZDnPO,o(O) (16)
n=1 n=1

Using (5) in equation (6) we recursively get,

r _ r 9 ny_ r n-2
anlPl,n(O)_{Zn:l[A+A +...+ A"] Zn:2[1+A+...+A lcp

-y ;:3 [CD? + CD? + ... + CD" '[Py 1(0) (18)
Using (7) in (8) we recursively get,

> RL.0=3"" (A" AM 1] [+ 247 T][CD? 5. CDT )

n=r+l1 n=r+
~...CD" )Py 5(0) = L +... A" "D, 1 (L) (19)
From (9) we derive
P, ,1(1) = FPRy ((0) (20)
Where

P (AR + ABT 11 +24+...2487)D? + ...+ CD"2) - ...CcDE?)
1+A+. AR7T-2
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Using (10) in (11) we get

R R
D Ba)= > a+B+..+B"ER (0) 21)
n=r+l1 n=r+l

Using (12) in (13) and (15) we get
K = K n-r n-R-1
zanHPLn(l)—Zn:RH{F[BJr---B +(B +...B+1)
(A+.. AR D (BB Br1)(Af + . AR~ A)+ .. ACDF2)P, ((0)

(22)

4. Characteristics of the Model

K
P(0)= >R ,(0)
n=0
P(0) existsonly when n=1,2, ...r=1, r,r+1,...R -1, we get
PO=Y" B0+ P 0 (23)
n=1 b1 n=r+1’ L7
From (18), (19), (20) and (23), we get

P(O) = {Z;:l[A T An]— Z:zz[l + An—Z]CD
- Zr [CD? + ..+ CD" ]+ ZRJ {([A™ + AL —1]-...cD™ )

n=3 n=r+1

Pyo(0) = F(1+... A" " H)}{Py 4(0) (24)

Now,

P(1)= Y Ba0)
n=0

P(1) existsonly when n=r+1,r+2...K
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R K
PO=) " R.0+) B, (25)
From (21), (22) and (23) we get
PQ) = {ZR A+..B""HF 4+ ZK (FIB+...B""
n=r+1 n:R+1

+(B"E T 4 L B+1)(A+... AT - L ACD" 2R, 4(0) (26)

The system is empty can be calculated from the normalizing condition
PO)+P(1) =1

[Gy + G3]Py ¢(0) = 1

Pyo(0) =[Gy + Gy (27)
we have
Ls = LSO + le (28)
Where
r R-1
Ly, = Z - nP, ,(0)+ Z I nP, ,(0) (29)
and
R K
le - Z n=r+1 P17n(1) + Z n=R+1 Pl,n(l) (30)

Now by using Little’s formula,
W, = Lk (32)
Where A = A, P(0) + A P(1).
5. Numerical Illustrations

For various values of Aig, Aq, p, & v the values of Py ((0), P(0), P(1),

L,, W, are computed
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Let r=4, R="7, K =8, v =20.

Table

Ao M H € PO,O(O) P(O) P(l) Ly W,

6 6 5 1 0.1259 | 0.5170 | 0.4098 | 11.4961 | 2.0672

6 6 5 | 0.5 | 0.1458 | 0.5472 | 0.3695 | 11.8891 | 2.1615

6 6 5 0 0.1640 | 0.5130 | 0.3343 | 12.2230 | 2.2452

6 6 4 1 0.0164 | 0.2313 | 0.7452 | 8.0279 | 1.3702

6 6 4 | 0.5 | 0.0253 | 0.2798 | 0.6883 | 8.6146 | 1.4832

5 5 5 1 0.5604 | 0.8191 | 0.0425 | 14.6064 | 3.3905

5 5 5 0 0.5506 | 0.8284 | 0.0165 | 14.8318 | 3.5107

7 6 6 0 0.2612 | 0.8224 | 0.0317 | 15.2184 | 2.5592

7 6 6 | 0.5 | 02569 0.8477 | 0.0081 | 15.5025 | 2.5913

6 7 4 0 0.0203 | 0.1852 | 0.7915 | 7.7787 | 1.1694

8 7 5 0 0.0427 | 0.5212 | 0.4095 | 11.0623 | 1.5723

8 7 5 | 0.5 | 0.0349 | 0.5025 | 0.4351 | 10.6700 | 1.5101

Mean value of customers in the system (Ls)
and the anticipated waiting time of the
customers in the system (Ws) by varying faster
arrival A0 and keeping other parameter fixed

| s emu\\s

Figure 1.
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Mean value of customers in the system (Ls) and
the anticipated waiting time of the customers
in the system (Ws) by varying slower arrival A1

and keeping other parameter fixed
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Figure 2.

Mean value of customers in the system (Ls)
and the anticipated waiting time of the
customers in the system (Ws) by varying i and
keeping other parameter fixed

Figure 3.

Mean value of customers in the system (Ls) and

the anticipated waiting time of the customers in

the system (Ws) by varying £ and keeping other
parameter fixed
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Figure 4.
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6. Conclusion

It is observed from the tables I and II that when the mean dependence

rate increases and the other parameters are kept fixed, both L, and W,

decreases. When the service rate increases and the other parameter are kept

fixed, both L; and W, increases. When the arrival rate increases and the

other parameter are kept fixed, both L; and W, decreases. The model

includes the earlier models as particular cases. For example, when v = 0,

this model reduces to the M/M/1/K interdependent queueing model with

controllable arrival rates [5]. When A, tends to A; and & = 0, this model
reduces to the M/M/1/K queueing model with vacation [4]. When A, tends
to A, € =0 and v = 0, this model reduces to the conventional M/M/1/K

queueing model.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
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