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1. Introduction

Fuzzy set theory is a powerful hand set for modeling uncertainly and
vagueness in various problems arising in the field of science and engineering.
It has also very useful applications in various fields, computer programming,
nonlinear dynamical systems, nonlinear operators, statistical convergence
etc. The fuzzy topology proved to be a very useful tool to deal with such
situations where the use of classical theories breaks down. The most

fascinating application of fuzzy topology in quantum particle physics arises in

string and e(®) -theory.

Stability problem of a functional equation was first posed by Ulam [23]
which was answered by Hyers [6] and then generalized by Rassias [14] for
addictive mappings and linear mappings respectively. Since then several
stability problems for various functional equations have been investigated in
[14] and various fuzzy stability results concerning Cauchy, Jensen and
quadratic functional equations were discussed.

After a while, Smarandache [18] introduced the notion of Neutrosophic
Sets [NS], which is the different kind of the notation of the classical set
theory by adding an intermediate membership function. This set is a formal
setting trying to measure the truth, indeterminacy and falsehood. Later on,
the concepts of statistical convergence of double sequences have been
analyzed in IFNS by Mursaleen and Mohiuddin [9]. Quite recently, Kirisci
and Simsek [7] introduced the notion of Neutrosophic normed space and
statistical convergence. Since Neutrosophic Normed Space [NNS] is a natural

generalization of IFNS and statistical convergence.

In this paper, we determine some stability results concerning the cubic
functional equation f(2x + y)+ f(2x —y) = 2f(x + y) + 2f(x — y) + 12f(x) in
NNS. We define the Neutrosophic continuity of the cubic mappings of the
function and prove that the existence of a solution for any approximately
cubic mappings implies the completeness of NNS.

Definition 1.1. The 6-tuple (X, u, 9, o, *, ¢) is said to be a Neutrosophic

Normed Space (NNS) if X is a vector space, * and ¢ are the CTN and CTC,
respectively and p, 9, ® are Normed spaces on X x (0, o) fulfilling the
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conditions below: For each x, y € X and for each s, ¢ > 0, 0 # O,

(NNS-1) 0 < pu(x, ) <1,0<v(x, ) <1,0 < olx, t) <1, for all ¢ € (0, oo);

(NNS-2) u(x, t) + v(x, t) + o(x, t) < 3;

(NNS-3) (x, ¢) > O;

(NNS-4) u(x, ¢) > 0; if and only if x = 0;

(NNS-5) u(0x, t) = u(x, |}le, for each 0 = O;
(NNS-6) u(x, t) * u(y, s) < w(x + y, t +s);
(NNS-7) u(x, -) : (0, ©) — [0, 1] is continuous and increasing;
(NNS-8) lim;_,,, u(x, £) =1 and lim;_,o p(x, t) = 0;
(NNS-9) v(x, t) < 1;
(NNS-10) v(x, ¢) = 0 if and only if 3 = 0;

(NNS-11) v(0x, ¢) = k(x, IIETIJ for each 0 = 0;

(NNS-12) v(x, t)ou(y, s) > v(x + y, t + s);

(NNS-13) v(x, -) : (0, ©) — [0, 1] is continuous and increasing;
(NNS-14) lim;_,, v(x, ¢) = 0 and lim;_,q v(x, t) = 1;

(NNS-15) o(x, t) < 1;

(NNS-16) o(x, t) = 0 if and only if ® = 0;

(NNS-17) (0x, t) = (n(x, ﬁj for each 0 # 0;

(NNS-18) afx, t)oa(y, 8) = ofx + y, t + s);
(NNS-19) o(x, -) : (0, ©) — [0, 1] is continuous and increasing;
(NNS-20) lim;_,, o(x, £) = 0 and lim,_,q o(x, t) = 1;
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Then (u, 9, ®) is called Neutrosophic Norm (NN).

Example 1.2. Let (X,|:|) be a normed space, a*b=ab and
a o b=min{a+b,1} for all a,be0,1. For all x € X and every ¢ <0,

consider

ite>0 I2]_i¢ 450
e, ) = ST Lol £) =+ ] and
0if¢<0 01ft<0

=1
olx, t>={71“>0

0ift<0
Then (X, b, 9, o, *, ©) is an NNS.

The concepts of convergence and Cauchy sequences in an NNS are
studied.

Let (X, u, 9, o, *, ©) be an NNS. Then, a sequence x = (x3) is said to be
Neutrosophic convergent to L e X if limu(xy — L, t) =1, imu(x, — L, ¢)
=0 and o(xy — L, t)=0, for all ¢ > 0. In this case we write x;, — L as
k — oo

Let (X,u, 9, ® % 0) be an NNS. Then x =(x3) is said to be
Neutrosophic Cauchy sequences if lim p(xy , — xp, t) = 1, lim v(xp, , — xp, t)
=0 and o(xp,p — %, t) =0 forallt>0and p=1,2,....

Let (X, 9, , * ¢) be an NNS. Then (X, y, 9, o, *, ©) is said to be

complete if every neutrosophic Cauchy sequences if (X, p, 9, o, *, ¢)

neutrosophic convergent in (X, p, 9, o, *, ©).
2. Neutrosophic Stability

The functional equation f(2x +y)+ f(2x — y) = 2f(x + y) + 2f(x — )

+12f(x) (2.1) is called the cubic functional equation, since the function

f(x) = cx® is its solution. Every solution of the cubic functional equation is

said to be a cubic mapping. We begin with a generalized Hyers-Ulam-Rassias

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022



ON STABILITY OF A CUBIC FUNCTIONAL EQUATION ... 1979
type theorem in NNs for the cubic functional equation.

Theorem 2.1. Let X be a linear space and let (Z, W, v, @) be an NNS.
Let ¢ : X x X — Z be a function such that for some 0 < a < 8, W'(¢(2x, 0), t)

> w(ap(x, 0), t), v'(p(2x, 0), t) < V(ag(x, 0), t) and
o'(p(2x, 0), t) < o'(op(x, 0), t) (2.1.1)

and lim, ., W(e(2"x, 2"y), 8"t) =1, lim,,_,,, v'(p(2"x, 2"y), 8"t) =0 and

lim,_,, o'(p(2"x, 2"y), 8"t)=0, for all x,y in X and ¢>0. Let
(Y, 1, 9, ) be an neutrosophic Banach space and let f: X —>Y be a 0-

approximately cubic mapping in the sense that

n(f(2c + y) + f(20 — ¥) = 2f(xc + y) = 2f(x — y) = 12f(x), ¢) = W(O(x, y), ?),
u(f(2x + y) + f(2x — y) = 2f(x + ) - 2f(x — y) = 12f(x), t) < V'(0(x, y), ¢) and
o(f(2x + y) + f(2x — y) = 2f(x + y) = 2f(x — y) - 12f(x), t) < D (O(x, ¥), 1)
(2.1.2)

for all t >0 and all x, y € X. Then there exists a unique cubic mapping

C:X->Y such that w(C(x) — f(x), ) = W (e(x, 0), (8 — a)t),
o(C(x) - f(x), ) < U(gp(x, 0), B —a)) and  o(Clx)- f(x) £) 2 o(¢(x, 0),
(8—a)t) forall x e X and all t > 0. (2.1.3)

Proof. Put y =0 in (2.1.2). Thenforall x ¢ X and ¢ > 0

u(@ - f(x), %) > (g(x, 0), ), U(f%x) ~f(x), %) < V(e 0)1)  and

oa(f(gx) - f(x), %) < o/(p(x, 0), t) (2.1.4) Replacing x by 2"x in (2.1.4) and

using (2.1.1) we obtain

f@™x)  f@'%) b VS e(ame ) 0) > ol 0)
u( e ,16(8n)j—u(@(2 0= ol 0). )
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(f(Z””) f(2"x) ¢

J < v(g(2"x, 0, £) < v'((p(x, 0), é) and

gt 8" 16(8")
o f(2"+1x) _[(27x) t "x, < o o(x, 0), — or a
[ g g 16(8”)) o'((2"x, 0), t) ((p( 0), ) f |

x € X,t>0 and n > 0. By replacing t by a’'t, we get

(f(2n+1x) f(2"x) o't
H n+l n ’ n
8 8 16(8 )

U[f(2n+1x) _f(@"x) o
8n+1 ]" ’ 16(8”)

j > W(op(x, 0), 1),

J <v'(g(x, 0),¢) and

(f(Zmlx) f(2"x) ot

o o 16(8”)] < o'(ep(x, 0), ¢).

k+ k
It follows from f( x) - flx) = - 1(f(2k 1 *) f(2kx)j and (2.1.5)
gkt 8

that

”(f(znx) Zk !

> W(e(x, 0), 1),

x R+l ko oF

J " Ou(f(Qka) B f(2kx). ot J
16(8

U(p(x, 0), t) and

(2 x) n1 (f(2F %) f(2Fx) ol
® )Zk 016(8k k=0® gkl gk '16(8’3)

> o'(p(x, 0), t) (2.1.6)

n
for all xeX,t>0 and n >0, where Hj_laj:al*az...*an,

H;L:l aj =a ¢ ag ¢... ¢ a,. Byreplacing x with
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2™ x in (2.1.6) we have,

8n+m

on+m,. Zm . m .
u[f( )1 Zk016(8)k+mJ (o2, 0).0) 2 o ok, 0), -4 )

2" ") f(2mx) V'(p(2™x < v olx t
[ gn+m Zk 0 16(8)k+mj (9(2™x, 0), t) < ((P( , 0), ocmj
and

() g ) < om0 e o e o1 L
( e Zkom(s)ka (0(2"x, 0), ) = of ofx. 0), L.

n+m m n+m— k
Thus u[f(z +mx _ f(2mx) i Zkzm 1 16?(8t)kJ > M'((P(_x, O), t),

gntm 2m I kt ,
[f(smmx) f( x) zk " 11;_8)}J <V(¢(x, 0),t) and

(f(z’”mx) f(2mx) Z’”m -1 _alt J < o(g(x, 0), t), for all x e X, ¢ >0,

8n+m )

m >0 and n > 0. Hence

f(2""x)  f(2™x) ' t
e R
k=m  16(8)"
U(f(2n+mx) _ f(2mx)’ tJ < v'(olx, 0), %) and
gnem 8™ n+m-1 o't
k=m 16(8)*
f 2n+m f 2m , t
(o[ (8n+mx) _ (Smx), tj < o'(e(x, 0), m) (2.1.7)

k=m  16(8)*
© o k
forall x e X,t>0,m>0 and n >0, since 0 < a < 8 and Zk:o(g) < o

n
the Cauchy criterion for convergence in NNS shows that [@J is a
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Cauchy sequence in (Y, p, v, ). Since (Y, u, v, ®) is complete, this sequence

converges to some point C(x) € Y. Fix x € X and m = 0 in (2.1.7) to obtain

u[ 122) o) ] > (ot 0 ),

n-1
k=0 16(8)"
f(2"x) , ¢
U(S—n - f(x), tJ < v'(o(x, 0), n—l—ak) and
o FZ) - 1)1 < ot 01—,

forall ¢ > 0 and n > 0. Thus, we obtain

(08) - 10 0= 0= L. Lo 1) g
8 8

= W(g(x, 0), W)
k0 g(s)"
0(Cx) - Dlx), 1) = U(C( )- &), ;] [f ) fx), 2J
8 8"
< v'(o(x, 0), %) and

n-1
Zk:() 8(8)k
o) - D) )= o )= 120, o of )i

< o'(g(x, 0), nl—(xk)

k0 g(s)"

for large n. Taking the limit as n — o and using the definition of NNS, we

get
r(CX) - f(x), £) = W(olx, 0), (8 - a)t),

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022



ON STABILITY OF A CUBIC FUNCTIONAL EQUATION ... 1983
U(C(X) - f(.’Xf), t) < U,(([)(x, 0)’ (8 - O(')t) and

o(C(X) - f(x), t) < o(olx, 0), (8 - a)t)

Replacing x and y by 2"x and 2"y respectively in (2.1.2) we have

W(Clw) - D), 0 - [“Z“ D@W)]z(agﬂ f2s) g

*%ﬁ%ﬂ—mo]>%ﬂwxm8@ZMQ>%wam§@%ﬂﬂ
8 Za

0(C) - Dix), 1) = [“2” D@W)]g{afﬂ_ﬂfﬂ,q

o L2, ] < of otz 00 B0 < f o, 0, 0]
3 2

[02

o(Clx) - D(x ® C(2"x) D(2"x) - C2'x) f(2'x) t
()~ Do )= of A2 DAE), ] ) _[210) 1)

o w(f(zzx) ~ f(x), éj < @'[@(2”95, 0), M] < @'((P(x’ 0), MJ
—8 20,

8"(8 — a)t

20"

n
limn_mu( (x, 0), 8°(8 - oc)tj 1, lim,, 8’(@(&5, 0), MJ =0 and
2

20" o'

Since lim,,_,, = o, we get

1imn_>oooo[ (x, 0), (8 oc)t] 0.

Therefore, pu(C(x)— D(x), t) =1, 3(C(x) — D(x), t) = 0 and
o(C(x) — D(x), t) = 0, for all ¢ > 0.

Hence C(x) = D(x).

(f(2”(2x+y)) f2"2x —y)  2f(2"(x +y) 2f(2"(x —y)) 12f(2"x) tJ
8" 8" 8" 8" g
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2 H’((p(an : zny)’ Snt)’

U[f(2”(2x +) , f2"2x -y)  2f(2"x +y) 2f(2"(x - y) 12f(2"x) t]
8" 8" 8" 8" g

< V(p(2"x - 2"y), 8"t) and

0)[1’(2”(296 +) , f2"2x -y) 2/(2"(x+y) 2f(2"(x-y)) 12/(2"x) t]
8" 8" 8" 8" g

< o(p(2"x - 2"y), 8"¢),

for all x, ye X and for all ¢ > 0. Since lim,_,, pW(p(2"x-2"y), 8") =1,

lim,,_,, V(o(2"x -2"y), 8"t) =0 and lim,_,, o'(@(2"x-2"y), 8"¢) = 0. We
observe that C fulfills (2.1). To prove the uniqueness of the cubic function C,

assume that there exists a cubic function D : X — Y which satisfies (2.1.3).
For fix x € X, clearly C(2"x) = 8"C(x) and D(2"x) = 8" D(x) for all n € N.
It follows from (2.1.3) that

w(C) - Do) ) - o O D2 ) [ OS2 |

‘ u(f(z’:x) i) %J . u{wx, o), 816 ootJ . u,((p(x’ 0 B oot}

o(Clx) - D), ) = U(C(::x) -BEs), tj < U(C(:Zx) 128, %J

. U(f(2zx) D) : J g U{(p(znx’ 0) MJ P U{(p(x, o), 8”(8_—f)t]
8 8 200

o(Clx) - D(x), t) = m(ci:x) _ D(:::x)’ tJ < m[ci:x) _f (sz)’ %J

n n n n
o f(2"x) D(2 x), Loy o2"x, 0), 8™"(8 — a)t < o olx, 0), 8"(8 - a)t
" ]n 2 2 20
n
Since lim,,_,,, 8M8-a)t = o, we get
2a"
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n n
lim,,_, ., u’((p(x, 0), WJ =1, lim,_, 9’[([)(36, 0), M] =0 and
o

20

an

im, ., m’[(p(x, 0), @J _ 0.

Therefore, u(Cx) - D(x), ¢) = 1, 8(Clx) - D(x), £) = 0 and
o(C(x) - D), 1) = 0, for all ¢ > 0.

Hence C(x) = D(x).

Example 2.2. Let X be a Hilbert Space and Z be a normed space. Denote
by (u, 9, ®) and (W, ¥, @) the Neutrosophic norms given as in Example (1.2)

on X and Z, vrespectively. Let ¢:XxX —>Z be defined by
(x, y) = 8(| x|* + | ¥ |*)z9, where z, is a fixed unit vector in Z. Define

f:X > X by f(x)=|x|* +|x[*x for some unit vector x; € X. Then

t

R(f(2x + ) + f(2x — y) = 2f(x + y) - 2f(x - y) - 12f(x), 2) = 5 5
t+8 x| +8y

= M'((P(x, y)a t)’

2 2
lx|” + 8yl

8(f(2x + y) + f(2x — ) = 2f(x + ¥) = 2f(x — y) - 12f(x), ¢) < ) )
t+8x|"+8 v

< 9(o(x, y), t) and

2 2
8lx|” + 8y

o(f2x +y) + f(2x — y) = 2f(x + y) - 2f(x — y) = 12f(x), t) < ;
< o(o(x, y), t).

t

Also, p(p(2x, 0), t) = = W (4o(x, 0), t),

t +32] x |
32) x|
9oz, 0), 1) - 2 g4z, 0), 1) and
32« ||
32| x |* "
o'(p(2x, 0), t) = — = ®'(4¢(x, 0), t). Hence, conditions of Theorem (2.1),
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for o =4 are fulfilled. Therefore, there is a unique cubic mapping
C:X —>X such that pC(x)-f(x), t)=> W(e(x, 0), 4t), HC(x) — f(x), t)
< %(p(x, 0), 4¢) and o(C(x) - f(x), t) = o(¢(x, 0), 42) in the following

theorem we consider the case o > 8.
Theorem 2.3. Let X be a linear space and Let (Z, |, 9, o) be an NNS.

Let ¢ : X x X — Z be a function such that for some a > 8,

W(e(x/2, 0), ) = w(elx, 0), at), ¥(e(x/2, 0), 1) < ¥(o(x, 0), at), @((xx/2), 0, )
< o'(p(x, 0), at) and

lim, ., W(8"e(27"x, 27"y), t) =1, lim,,_,, 9(8"p(27""x, 27"y), t) = 0,
lim,,_,, o'(8"(27"x, 27"y), ) =0, for all x,yeX and all ¢t>0. Let

(Y, 1, 9, ® be an Neutrosophic Banach Spaceand let f:X —Y be a o-

approximately cubic mapping in the sense of (2.1.2). Then there exists a
unique cubic mapping C : X — Y such that

n(Clx) - f(x), t) = W(plx, 0), (o — 8)t), H(Clx) — f(x), t) < H(o(x, 0), (o0 — 8)2)
o(C(x) - f(x), t) < o (p(x, 0), (o0 — 8)¢) for all x € X and forall t > 0.

Proof. The techniques are similar to that of Theorem (2.1). Hence we
present a sketch of proof. Put y = 0 in (2.1.1), we get,

n(2f(2x) —16f(x), £) = W(oe(x, 0), £), H(2f(2x) — 16/(x), ) < ¥(¢(x, 0), t) and
o(2f(2x) —16f(x), t) < o'(p(x, 0), t), for all x € X and ¢ > 0. Therefore,
u(f(x) - Sf(g), t) > W(o(x, 0), 2at), S(f(x) _ Sf(%), tj < 9(ol(x, 0), 2a¢) and

(D(f(x) - 8f(%), t) < o(p(x, 0), 2at), for all x € X and ¢ >0. For each

xeX,n>0,m=>0 and ¢t > 0, we can deduce

M(8"+mf(2_(n+m)x) -8Mf(27Mx), t) > W(o(x, 0), t k )

Zn+m o
k=m+1 16(8)k

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022
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t

n+m o

k=m+1 16(8)k

S(8n+mf(2—(n+m)x) —-8™f(27™x), t) < 9(o(x, 0), ) and

k

08" F(27 " x) - 87 (27, 1) < Wlo(w, 0, ——L—). (23D

zn+m o
k=m+1 16(8)k

Thus, (8™f(2™x)) is a Cauchy sequence in Neutrosophic Banach Space.

Therefore, there is a function C:X->Y defined by
C(x) = lim,,_,,, 8"f(27"x), (2.3.1) with m =0 implies p(C(x)- f(x), t) =
M,((P(x> 0)9 (0" - S)t)’ S(C(.’)C) - f(.’)C), t) = 9,(@(‘76’ O)’ ((X - 8)t) and

o(c(x) - f(x), t) < &'(p(x, 0), (o0 — 8)¢), for all x € X and for all ¢ > 0.

3. Conclusion

We linked here two different disciplines, namely, the fuzzy spaces and
functional equations. We established Hyers-Ulam-Rassias stability of a cubic
functional equation f(2x + y)+ f(2x —y) = 2f(x + ) + 2f(x — y) + 12f(x) in
the set of NNS.
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