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Abstract 

If 2nqN k  is an odd perfect number given in Eulerian form, then the Descartes-Frenicle-

Sorli conjecture predicts that .1k  Brown [5] has recently announced a proof for the 

inequality ,nq   and a partial proof that nqk   holds under many cases. In this article, we 

give a strategy for strengthening Brown’s result to .2 nq   

1. Introduction 

If N is a positive integer, then we write  N  for the sum of the divisors 

of N. A number N is perfect if   .2NN   It is currently unknown whether 

there are infinitely many even perfect numbers, or whether any odd perfect 

numbers (OPNs) exist. Ochem and Rao recently proved [12] that, if N is an 

odd perfect number, then 150010N  and that the largest component (i.e., 

divisor ap  with p prime) of N is bigger than .1062  This improves on previous 

results by Brent, Cohen and te Riele [3] in 1991  30010N  and Cohen [7] 

in 1987 (largest component .1020ap  

An odd perfect number 2nqN k  is said to be given in Eulerian form if q 

is prime with  4mod1 kq  and   .1,gcd nq  (The number q is called 

the Euler prime, while the component kq  is referred to as the Euler factor. 

Note that, since q is prime and 1q  (mod 4), then .5q  
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We denote the abundancy index I of the positive integer x as 

 
 

.
x

x
xI


  

In his Ph.D. thesis, Sorli [13] conjectured that ,1k  after testing large 

numbers with 8 distinct prime factors for perfection. (More recently, Beasley 

[2] points out that Descartes was the first to conjecture 1k  “in a letter to 

Mersenne in 1638, with Frenicle’s subsequent observation occurring in 

1657”.) 

In the M.Sc. thesis [11], it was conjectured that the components kq  and n 

are related by the inequality .nqk   This conjecture was made on the basis 

of the result    .nIqI k   Recently, Brown [5] announced a proof for the 

inequality ,nq   and a partial proof that nqk   holds under many cases. 

2. Conditions Sufficient for Sorli’s Conjecture 

Some sufficient conditions for Sorli’s conjecture were given in [9]. We 

reproduce these conditions here. 

Lemma 1. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If ,qn   then .1k  

Remark 2. The proof of Lemma 1 follows from the inequality 2nqk   

and the congruence 1k  (mod 4) (see [9]). (Note the related inequality 

   2nIqI k   

for the abundancy indices of the components kq  and .2n  

Lemma 3. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If 

   ,qn   

then .1k  

Lemma 4. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If 
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   
,

n

q

q

n 



 

then .1k  

Remark 5. Notice that, if 

   
,

n

q

q

n 



 

then it follows that 

       
.

n

q

n

q

q

n

q

n k

k











 

Consequently, by the contrapositive, if 

   
,

k

k

q

n

n

q 



 

then 

       
.

q

n

q

n

n

q

n

q
k

k 









 

Remark 6. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Suppose that 

   
.

q

n

n

q 



 

Then we know that: 

   .nnqq   

Since   ,1,gcd nq  then  nq |  and  .| qn   Therefore, it follows that 

 
n

q
 and 

 
q

n
 are equal positive integers. 

This is a contradiction, as: 

 
 

        2
3

5

5

61
11 


 qnInIqInI

qq

q
qI  
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which implies that: 

       
       

.2
3

5
1 





























q

n

n

q

n

n

q

q
qnInIqInI  

Consequently, 

   
.

q

n

n

q 



 

Similarly, we can prove that 

   
.

k

k

q

n

n

q 



 

Lemma 7. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then qn   if and only if .3qN   

Proof. Suppose that 2nqN k  is an odd perfect number given in 

Eulerian form. If ,qn   then assuming to the contrary that ,3 Nq   we get 

that 

3223 qqqqnNq   

since qn   implies ,1k  by Lemma 1. For the other direction, if ,3qN   

then ,32 qnqk   so that we have 

232 qqn k    

since 1k  (mod 4) implies that .1k  Consequently, ,qn   and we are 

done.  

Corollary 8. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then 25qn   if and only if .6qN   

Proof. First we show that 25qn   implies .1k  To this end, assuming 

,25qn   since 2nqk   (see [9]), we then have that: 

.52 qnqq k   
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The last chain of inequalities implies that 

.51  k  

This inequality, together with the condition  ,4mod1k  implies that 

.1k  

We now prove the claim in Corollary 8. If ,25qn   then assuming to the 

contrary that ,6 Nq   we get that 

.6526 qqqqnNq   

This is a contradiction. For the other direction, if ,6qN   then ,62 qnqk   

so that we have 

562 qqn k    

since  4mod1k  implies that .1k  Consequently, ,25qn   and we are 

done.  

Remark 9. A recent result by Acquaah and Konyagin [1] almost 

disproves .qn   They obtained the estimate   31
3Ny   for all the prime 

factors y of an odd perfect number N. In particular, if 2nqN k  is an odd 

perfect number given in Eulerian form, then letting qy   and assuming 

1k  gives: 

    .3333 2331231
nqqnqqnNq   

Since the contrapositive of the implication 1 kqn  is ,1 nqk   

it follows that the inequality 

3nq   

holds unconditionally, regardless of the status of Sorli’s conjecture. 

 More recently, Brown [5] claims a proof for the inequality ,nq   and a 

partial proof that nqk   holds under many cases. 

We now give a condition that is weaker than ,qn   which also implies 

.1k  
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Lemma 10. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then 

21
5

2

3







 qn  

implies .1k  

Proof. Suppose that 2nqN k  is an odd perfect number given in 

Eulerian form. Let 

21
5

2

3







 qn  

and assume to the contrary that .1k  Since  ,4mod1k  this means that 

.5k  Additionally, from [9], we have that 

  .
3

2 2nqq kk   

Consequently, we have the following chain of inequalities: 

.
2

3

3

2 5

221
55 qqqq k 





















  

This is a contradiction.  

We also have the following corollary to Lemma 10, and this uses a result 

from [4]. 

Corollary 11. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then 

21
5

2

315







 qn  

implies .1k  

Proof. The proof is very similar to that of Lemma 10, except that it uses 

the improved bound 

  2

315

2
nqk   

(see [4]) instead of 
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  2

3

2
nqk   

(see [9]).  

Remark 12. Similar to the proofs of Lemma 7 and Corollary 8, we can 

show that the following biconditionals are true: 

6
21

5

2

3

2

3
qNqn 







  

.
2

315

2

315 6
21

5 qNqn 






  

Remark 13. Chen and Chen [6] has a relatively recent paper which 

further improves on Broughan et al.’s results (see [4]). They also pose a 

related open problem. 

3. New Results Related to Sorli’s Conjecture 

First, we reproduce the following lemma from [9], as we will be using 

these results later. 

Lemma 14. Let 2nqN k  be an odd perfect number given in Eulerian 

form. The following series of inequalities hold: 

• If ,1k  then       .2
3

5

5

6
1  nIqIqI k  

• If ,1k  then     .2
5

8

4

5
1  nIqI k  

We have the following (slightly) stronger inequality from [9]. 

Lemma 15. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then     .22
nIqI k   

Proof. The proof follows from the inequality   3
2kqI  and the 

equation    .2 2nIqI k   

Remark 16. Another proof of Lemma 15 is as follows: 
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      .
5

8
6.15625.1

16

25

4

5 22
nIqIqI kk   

In fact, if 

    2

5

8

4

5
nIqI

y
yk 







  

then 

.
2log25log

5log2log3




y  

Thus, if we let 

,1062837195.2
2log25log

5log2log3





z  

then 

    .
5

8 2nIqI
zk   

Next, we derive a lower bound for    .nIqI k   

Lemma 17. Let 2nqN k  be an odd perfect number given in Eulerian 

form. The following inequality holds: 

        .21  nIqInIqI k  

Proof. Let 2nqN k  be an odd perfect number given in Eulerian form. 

Then we have the following: 

       
 

.
121

1
q

q

q
nIqInIqI k 

  

But 

 
 

q

q

q
qf

121
1


  

is a decreasing function of q. Consequently, 
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 
 

.21
121

1lim 






 


 q

q

q
qf

q
  

Remark 18. The following result was communicated to the author (via e-

mail, by Pascal Ochem) in April of 2013. If 2nqN k  is an odd perfect 

number given in Eulerian form, then 

 

 
 

.44440557.1
5

8 913ln

34ln








nI  

(Note that 

 
 

.2
5

8 913ln

34ln








  

Further to Remark 18 and Lemma 15, we have the following related 

result. 

Lemma 19. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then     .2
nIqI   

Proof. By Lemma 14, 

     .44.1
25

36

5

6 2
 qIqI  

The conclusion follows from the result   44440557.1nI  in Remark 18. 

In fact, if 

 

 
 913ln

34ln

5

8

5

6















u

u
qI  

Then 

         
           

.
13log3log25log3log2log

5log2log33log2log2




u  

Thus, if we let 

         
           

0168.2
13log3log25log3log2log

5log2log33log2log2





v  

then 
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  

 
 

 .
5

8 913ln

34ln

nIqI
v








   

Remark 20. As pointed out by Ochem to the author (via the same e-mail 

mentioned in Remark 18), a case-by-case analysis yields a sharper lower 

bound for     :nIqI k   

• If ,5q  then                913ln/34ln
5856  nIqInIqI k  

.6444055.2  

• If ,13q  then                913ln/34ln
13241314  nIqInIqI k  

.6924318.2  

Therefore, we have the lower bound 

       

 
 

.6444055.2
5

8

5

6 913ln

34ln








 nIqInIqI k  

We now state and prove the following theorem, which provides conditions 

equivalent to the conjecture mentioned in the introduction. 

Theorem 21. If 2nqN k  is an odd perfect number given in Eulerian 

form, then the following biconditional is true: 

   .nqnq kk   

In preparation for the proof of Theorem 21, we derive the following 

results. 

Lemma 22. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If 

   
   

,
k

k
k

q

n

n

q
nIqI





  

then 

   .nqnq kk   
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Proof. Let 2nqN k  be an odd perfect number given in Eulerian form. 

Assume that 

   
   

.
k

k
k

q

n

n

q
nIqI





  

It follows that 

       .nI
q

n
qI

n

q
nIqI

k

k
k

k



























  

Consequently, 

        .22 nInqIqnIqInq kkkk   

Thus, 

       .kkkk qInqqnInqn   

If ,nqk   then .0 nqk  Hence, 

       .nqnnIqIqnq kkkk   

If ,kqn   then .0 nqk   Hence, 

       .kkkk qnqIqnnIqn   

Consequently, we have 

   ,nqnq kk   

as desired.  

Lemma 23. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If 

   
   ,nIqI

q

n

n

q k

k

k







 

then 

   .kk qnnq   
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Proof. The proof of Lemma 23 is very similar to the proof of Lemma 22.  

Now, assume that 

   
   .nIqI

q

n

n

q k

k

k







 

Consider the conclusion of the implication in Lemma 23 in light of the result 

    :nIqI k   

   .kk qnnq   

If ,nqk   then since    nIqI k   implies that 

 
 

,
n

q

n

q kk





 

we have 

 
 

,1




n

q

n

q kk

 

which further implies that    .nqk   This contradicts Lemma 23. 

Similarly, if    ,kqn   then 

 
 

,1
n

q

n

q kk





  

from which it follows that .kqn   Again, this contradicts Lemma 23. Hence, 

we know that 

   nqqn kk   

must hold, under the given assumption. Assuming Brown’s proof for nqk   

is completed, this case is ruled out. Consequently, the inequality 

   
   nIqI

q

n

n

q k

k

k







 

cannot be true. Therefore, the reverse inequality 
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   
   

k

k
k

q

n

n

q
nIqI





  

must be true. 

It remains to consider the case when 

   
   

.
k

k
k

q

n

n

q
nIqI





  

Notice that this is true if and only if 

   ,nqk   

(because .nqk   Thus, since    ,nIqI k   this implies that .kqn   

Again, assuming Brown's proof for nqk   is completed, this case is ruled 

out. 

In other words (by Lemma 22), we have Theorem 21 (and the corollary 

that follows). 

Corollary 24. If 2nqN k  is an odd perfect number given in Eulerian 

form, then the following biconditional is true: 

   
.

k

k
k

q

n

n

q
nq





  

We now give another condition that is equivalent to the author’s 

conjecture (mentioned in the introduction). 

Theorem 25. If 2nqN k  is an odd perfect number given in Eulerian 

form, then the following biconditional is true: 

     
 

 

 
.

k

k

k

k

k

k

q

n

n

q

q

n

n

q

q

n

n

q















 

Proof. Let N be an odd perfect number given in Eulerian form. Then 

2nqN k  where  4mod1 kq  and   .1,gcd nq  
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First, we show that 

   
k

k

q

n

n

q 



 

implies 

 
 

 

 
.

k

k

k

k

q

n

n

q

q

n

n

q









  

Since    ,nIqI k   we have that 

 
 

.
n

q

n

q kk





 

On the other hand, the inequality 

   
k

k

q

n

n

q 



 

gives us that 

 
 

.
k

k

q

n

n

q





 

This in turn implies that 

 

 
.

k

k

q

n

n

q




  

Putting these inequalities together, we have the series 

 
 

 

 
.

k

kk

q

n

n

q

n

q









 

Now consider the product 

 
 

 

 
.





































n

q

q

n

n

q

n

q k

k

kk

 

This product is negative. Consequently we have 
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 
 

 

 

 
 

 

 
,0

2
























































































n

q

q

n

n

q

n

q

q

n

n

q k

k

kk

k

k

 

from which it follows that 

 
 

 

 
.1

2




















































k

kkk

q

n

n

q

n

q

n

q
 

Therefore, we obtain 

 
 

 

 k

kk

k q

n

n

q

n

q

q

n









  

as desired. 

Next, assume that 

   
.

n

q

q

n k

k





 

Since    ,nIqI k   we obtain 

 
 

.
n

q

n

q

q

n kk

k





  

Now consider the product 

 
 

 
 

.






































n

q

n

q

n

q

q

n
kkk

k
 

This product is negative. Therefore, we obtain 

 
 

 
 

,0

2

















































































n

q

n

q

q

n

n

q

n

q

q

n
kk

k

kk

k
 

from which we get 

 
 

 
 

.1

2






















































n

q

q

n

n

q

n

q k

k

kk

 

Consequently, we have 
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 

 

 
 

.
n

q

q

n

n

q

q

n k

k

k

k










 

Together with the result in the previous paragraph, this shows that 

   
k

k

q

n

n

q 



 

is equivalent to 

 
 

 

 
.

k

k

k

k

q

n

n

q

q

n

n

q









   

Remark 26. Let 2nqN k  be an odd perfect number given in Eulerian 

form. 

Note that, in general, it is true that 

 
 

 

 

   
,

k

k

k

k

q

n

n

q

q

n

n

q 













 

and 

   
.

k

k

k

k

q

n

n

q

q

n

n

q 



  

Therefore, 

   
k

k

q

n

n

q 



 

is equivalent to 

 
 

 

 

   
,

k

k

k

k

k

k

q

n

n

q

q

n

n

q

q

n

n

q 













  

while 

   
n

q

q

n k

k





 

is equivalent to 
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 
 

 

 

   
.

k

k

k

k

k

k

q

n

n

q

q

n

n

q

q

n

n

q 













 

At this point, we dispose of the following lemma: 

Lemma 27. Let 2nqN k  be an odd perfect number given in Eulerian 

form. Then at least one of the following sets of inequalities is true: 

• A :    nnqq kk   

• B :    nqnq kk   

• C :    kk qnqn   

• D :    .kk qqnn   

Lemma 27 is proved by listing all possible permutations of the set 

    nqnq kk  ,,,  

and then using Theorem 21. 

Note that Brown’s result that ,nqk   when completed, would rule out 

cases C and D in Lemma 27. Also, notice that by assuming ,1k  case B is 

also ruled out. 

Consequently, we have the following theorem. 

Theorem 28. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If ,1k  then   .nqk   

As a corollary, by the contrapositive to Theorem 28, we have: 

Corollary 29. Let 2nqN k  be an odd perfect number given in Eulerian 

form. If  ,kqn   then .1k  

Remark 30. If one could show the biconditional 

 ,1 kk qnqn    

then one would be able to show that 

.11   kqn k  
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By the contrapositive, one would then have 

.1 21 nqnqk k    

However, we know that 

.12  kqn  

Consequently, 

nqkqn  22 1  

which proves that ,2 nq   strengthening Brown’s result. 

4. Final Analysis of the New Results 

The new results presented in this article seem to imply the following 

conjecture (see [10]). 

Conjecture 31. Let 2nqN k  be an odd perfect number given in 

Eulerian form. Then the Descartes-Frenicle-Sorli conjecture is false. (That is, 

1k  must hold). 

Remark 32. Notice how all of the implications in the Lemmas 1, 3 and 4 

in Section 2 become vacuously true, given Brown’s result that .nq   Also, 

notice that, in Section 3, we could specialize Theorem 21 (and its 

consequences) to the case 1k  and still get the same results, as follows: 

   
   

.
q

n

n

q
nqnq





  

5. Conclusion 

An improvement to the currently known upper bound of   2nI  will be 

considered a major breakthrough. In the sequel (http://arxiv.org/ 

abs/1303.2329), a viable approach towards improving the inequality   2nI  

will be presented, which may necessitate the use of ideas from the paper [14]. 
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