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Abstract

We will give solution of Schwarz problem of higher order after applying different
combinations of boundary value conditions on the quarter plane.

1. Introduction

Here we will write the solution of inhomogeneous polyanalytic equations
[1] with Schwarz Boundary value conditions on the Quarter plane. In the
case of unbounded domains (like quarter plane and upper half plane), while
finding the solution of differential equations under different boundary
conditions, the technique of using iteration method gets failed due to arising
of unbounded integrals. While in case of bounded domains, it works well [2, 3,
4, 6, 7, 11, 12, 13]. Therefore, higher order representation of Gauss theorem
and Cauchy-Pompeiu formula are first developed on the Quarter plane to
solve these problems [14, 15, 16, 17] under different boundary conditions.
Similar technique of using Gauss theorem and Cauchy-Pompeiu formula is
also developed on the upper half plane [8, 9, 10].

2. Schwarz Boundary Value Problem

For a function w e C*(Q;; C) N C(Qy; C) satisfying w € L;(Q; C) and
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for which z%w(z) for some 0 < & is bounded in Q; besides the Cauchy-

Pompeiu representation formula (2.1) according to Gauss theorem [3, 4, 14]

and because z, -z, —z ¢ Q if z € Q; the relations
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hold for z € Q;. Adding equation (2.3) to equation (2.1) and subtracting (2.2)

and (2.4) from this sum gives
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If instead equations (2.3) and (2.4) are subtracted from the sum of (2.1)
and (2.2) similarly
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The representations (2.5) and (2.6) suggest two formulations of a Schwarz
boundary condition. They are dual to one another as can be seen by replacing
w by —iw.

Theorem 2.1. The Schwarz problem is uniquely solvable. The solution is

we) = 5 [ ) 5T ds = [Tl
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Moreover, as all terms in (2.7) are analytic in Q; up to
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1

T =1 f, 10T

and 0z7T f = f in the weak sense (2.7) is seen to be a weak solution to the

differential equation. 0

In an analogue way a Schwarz problem can be formulated and solved on
the basis of representation (2.6). Before writing expression for higher orders
we recall the following theorem, for proof see [14].

Theorem 2.2. Let Fj, be the space of functions in whk1 (Qq, C) for which
lim R*M(6%w, R)=0,0<A<k-1 where M(0%w, R) = max | %w(z) |
R |z |=R
0<I,Z
and Ek_28§w € Ll((@l, C). Then every w € F}, is representable as

k-1

. k-1 .
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for z € Q. 0

Lemma 2.3. For a function w e CYQq; C)NC(Qy; C) satisfying
2" 20%w(z) € L1(Qq; C) and for which z%w(z) for some 0 < & is bounded in
Qq besides the representation formula (2.9), according to Gauss theorem and
because -z, z, -z ¢ Qp and if z € Q1 then the relations (2.10), (2.11) and
(2.12) hold for z € Q.
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Proof. Equations (2.10), (2.11) and (2.12) are clear for n =1 by Gauss
theorem. Assume z € Q;p
n—v
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which is (2.10) for n +1
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which tends to zero as R tends to 1. Now, applying R < o in (2.13), we have
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which exists by the respective assumptions. Hence the required result. 0

Now, adding (2.9) and the complex conjugate of (2.11) and subtracting
(2.12) and complex conjugate of (2.10) leads to
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Similarly adding (2.9) and the complex conjugate of (2.10) and
subtracting (2.12) and complex conjugate of (2.11) shows
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These representation formulas (2.13) and (2.14) suggest Schwarz

Boundary value problem for inhomogeneous polyanalytic equation.
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Theorem 2.4. Let w be as in Lemma 2.1 then the Schwarz problem
%w(z) = f(z) in Qq, Redw = gr for 0<x <+, y=0V0<A<n-1,
Imd%w(z) = yh for 0<y<+4wo,x=0YA=0,2 4,6, .., Rdtw = ¢, for

O<y<+0,x =0VA=1,3,5,7, ... is uniquely weakly solvable for

f e Li(Qq; C), 93, Y5, 03 € C(RT; R), such that sBJ'kgo;L(s), 36+)‘1px(s),

s9**¢, (s) are bounded on R* = [0, + ) for some 0 <8 and 0 <X <n-1.
The solution is
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Theorem 2.5. Let w be as in Lemma 2.1 then the Schwarz problem
%w(z) = f(z) in Qq, Imdiw = gL for 0<x <+4w, y=0V0<A<n-1,
RedZw(z) = yr for 0<y<+0,x=0VA=0,24,6, ..., Im@%‘w = ¢, for
O<y<+0,x =0VA=1,3,5,7, ... 1is uniquely weakly solvable for
f e Li(Qi; ©) o, %3, 4 € C(RT; R),  such  that  s°" gy (s), s" 9y (s),
s%**¢, (s) are bounded on R* = [0, + ) for some 0 <8 and 0 <X <n-1.

The solution is
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Solution of all other combinations of Schwarz boundary conditions can

also be written in the similar way.
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