# MORE RESULTS ON 2-ODD LABELING OF GRAPHS 

P. ABIRAMI ${ }^{1}$, N. SRINIVASAN ${ }^{2}$ and A. PARTHIBAN ${ }^{3}$<br>1,2Department of Mathematics<br>St. Peter's Institute of Higher Education and Research<br>Avadi, Chennai - 600 054, Tamil Nadu, India<br>E-mail: sriabi1@yahoo.co.in<br>sri24455@yahoo.com<br>${ }^{3}$ Division of Mathematics<br>School of Advanced Sciences<br>Vellore Institute of Technology<br>Vellore- 632 014, India<br>Email: parthiban.a@vit.ac.in


#### Abstract

A 2-odd labeling of $G(V, E)$ is an injection ' $f$ from $V$ to $Z$ (the set of all integers) such that the absolute difference between the labels of the adjacent nodes is either an odd number or exactly 2 . If $G$ admits 2 -odd labeling, then it is called 2 -odd graph. This paper discusses 2 -odd labeling of some graphs and highlights a few notable applications of graph labeling in manufacturing.


## 1. Introduction

Only finite, simple, connected, and undirected graphs are studied in this article. Let $G(V, E)$ be a graph with set $V$ and the line set $E$. For graph theory concepts, we refer to [3]. According to Laison et al. [4] $G$ is 2 -odd if there exists an injective labelling $h: V(G) \rightarrow Z$ such that for any two nodes $x$ and $y$ which are adjacent, the integer $|h(x)-h(y)|$ is either an odd or exactly 2 . It is also defined that $h(s t)=|h(s)-h(t)|$ and called $h 2$-odd labelling of $G$. So $G$ is 2 -odd graph iff there exists 2 -odd labelling of $G$.

2020 Mathematics Subject Classification: 05C78.
Keywords: Graph, Graph labeling, 2-odd labeling, 2-odd graph.
Received May 27, 2022; Accepted June 1, 2022

Moreover, $h(x y)$ may still be either 2 or odd if $x y$ is not an line of $G$. For more results on 2 -odd graphs, one can refer to [1, 2, and 4].

## 2. Main Results

This section is devoted for deriving 2 -odd labeling of various classes of graphs, besides recalling few relevant concepts for the study undertaken.

Definition 1. [4] The graph $P l_{n}=(V, E)$, where $V\{1,2, \ldots, n\}$ and $E=\left(K_{n}\right) /\{(k, l) 3 \leq n-2$ and $k+2 \leq l \leq n\}$ is a planar graph having maximum number of lines, with $n$ nodes. The planar graph $P l_{n}$ having maximum number of lines with $n$ nodes is obtained by removal of $[(n-4)(n-3)] / 2$ lines from $K_{n}$, The number of lines in $P l_{n}: n \geq 5$ is $3(n-2)$. One such example $P l_{10}$ class graph is shown in Figure 1.


Figure 1. Planar graph $P l_{10}$.
Theorem 1. The planar graph $P l_{n}$ allows 2-odd labeling.
Proof. Let $P l_{n}$ be the planar graph with $V\left(P l_{n}\right)=V_{1} U V_{2}$, where $V_{1}=\left\{u_{1}, u_{2}\right\}$ and $V_{2}=\left\{v_{i} ; 1 \leq i \leq n\right\}$. Now define an injective function $f: V\left(P l_{n}\right) \rightarrow Z \quad$ as given: let $f\left(u_{1}\right)=1$ and $f\left(u_{1}\right)=-1$. Then $f\left(v_{i}\right)=2 i ; 1 \leq i \leq n$. One can see that $\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|=2$ and $\left|f\left(u_{1}\right)-f\left(v_{i}\right)\right|$
are odd numbers and $\left|f\left(u_{2}\right)-f\left(v_{i}\right)\right|$ are also odd numbers for all $1 \leq i \leq n$. Hence $f$ is the required 2 - odd labelling of $P l_{n}$.


Figure 2. Planar graph $\mathrm{Pl}_{8}$.
Definition 2 [6]. The friendship graph $F_{r_{n}}^{(k)}$ is a planar undirected graph with $(k+1) n+1$ nodes and $k n$ lines connected by connecting $n$ copies of the $C_{k}$ with a common node.

Theorem 2. $F_{r_{n}}^{(k)}$ allows $2-$ odd labelling $\forall k \geq 3$.
Proof. Let $F_{r_{n}}^{(k)}$ be on $(k+1) n+1$ nodes and $k n$ lines. Let $v_{0}$ be the central node and $v_{i}^{j}: 1 \leq i \leq k, 1 \leq j \leq n$ be the nodes on the first cycle, second cycle, and so on up to $n^{\text {th }}$ cycle. Now we define a one- to- one labelling $f: V\left(F_{r_{n}}^{(k)}\right) \rightarrow Z$ as follows: without loss of generality, let the central node $v_{0}$ be labelled with 0 , i.e., $f\left(v_{0}\right)=0$. There arise two cases.

Case (i). The cycle $C_{k}$, when $k$ is odd.
Without loss of generality, we label the nodes on the first cycle, starting with the second node, say $v_{1}$ (as the first node $v_{0}$ is already labelled) by giving 1 , for $v_{2}$ assign 2 , and consecutively up to $(n-1)^{t h}$ node assign $n-1$. Finally for the $n^{t h}$ node in the first cycle, we label by adding 2 with $(n-1)^{t h}$
label. That is $f\left(v_{n}^{1}\right)=f\left(v_{n-1}^{1}\right)+2$. Similarly, we label the second node of the second cycle with $f\left(v_{n}^{1}\right)+2$, the third node with $f\left(v_{2}^{2}\right)+1$, and so on up to the $(n-1)^{t h}$ node of the second cycle. Finally, the nth node of the second cycle is labeled with $f\left(v_{n-1}^{2}\right)+2$. Proceeding the same for the remaining cycles, see that $f$ is the 2 - odd labeling of $F_{r_{n}}^{(k)}$.

Case (ii). The cycle $C_{k}$, when $k$ is even
The graph thus obtained is a bipartite graph and the result follows from the fact that every bipartite graph is a 2 -odd graph.


Figure 3. 2- Odd Labeling of friendship graph.


Figure 4. 2-odd Labeling of friendship graph.

## 3. Applications of Graph Labeling

Graph theory is used to support selection of materials for designs in engineering and the identification of a system's suitability for
remanufacturing. Graph theory might be a more appropriate tool to use the advantages of a product's state-based representation of a manufacturing program's data and information gives. The consequent states along with the manufacturing program and the (inter-) relations between the state characteristics believed to provide an important foundation for graph theory without requiring huge adaptation. For a complete study, one can refer to [7].

## 4. Conclusion

In this paper 2 -odd labeling of some special graphs such as a planar graph, and friendship graph is derived, besides recalling interesting applications of graph theory in manufacturing. A complete characterization of 2 -odd graphs is still an open problem for further study.

## References

[1] P. Abirami, A. Parthiban and N. Srinivasan: On 2-Odd Labeling of Graphs, European Journal of Molecular and Clinical Medicine 07(07) (2020), 3914-3918.
[2] P. Abirami, A. Parthiban, and N. Srinivasan, Some Results on 2-odd Labeling of Graphs, International Journal of Recent Technology and Engineering (IJRTE) 8(5) (2020), 56445646.
[3] V. Govindan and S. Dhivya, Difference Labelling of Jewel Graph, International Journal of Mathematics Trends and Technology (IJMTT) 65(4) (2019), 64-68.
[4] J. Baskar Babujee, Planar Graphs with Maximum Lines - Antimagic Property, The Mathematics Education 37(04) (2003), 194-198.
[5] S. M. Lee, Graceful Labelling of Mongolian tents and Related Graphs, Congr. Number 50 (1985), 85-96.
[6] S. Meena and K. Vaithilingam, Prime Labelling of Friendship Graphs, International Journal of Engineering Research and Technology (IJERT) 1(10) (2012), 1-13.
[7] Thorsten Wuestab, Benjamin Knokea and Klaus-Dieter Thoben, Applying Graph Theory and the Product State Concept in Manufacturing, Procedia Technology 15 (2014), 349358.

