

MORE RESULTS ON 2-ODD LABELING OF GRAPHS

P. ABIRAMI¹, N. SRINIVASAN² and A. PARTHIBAN³

^{1,2}Department of Mathematics St. Peter's Institute of Higher Education and Research Avadi, Chennai - 600 054, Tamil Nadu, India E-mail: sriabi1@yahoo.co.in sri24455@yahoo.com

³Division of Mathematics School of Advanced Sciences Vellore Institute of Technology Vellore- 632 014, India Email: parthiban.a@vit.ac.in

Abstract

A 2-odd labeling of G(V, E) is an injection 'f from V to Z (the set of all integers) such that the absolute difference between the labels of the adjacent nodes is either an odd number or exactly 2. If G admits 2-odd labeling, then it is called 2-odd graph. This paper discusses 2-odd labeling of some graphs and highlights a few notable applications of graph labeling in manufacturing.

1. Introduction

Only finite, simple, connected, and undirected graphs are studied in this article. Let G(V, E) be a graph with set V and the line set E. For graph theory concepts, we refer to [3]. According to Laison et al. [4] G is 2-odd if there exists an injective labelling $h: V(G) \to Z$ such that for any two nodes x and y which are adjacent, the integer |h(x) - h(y)| is either an odd or exactly 2. It is also defined that h(st) = |h(s) - h(t)| and called h 2-odd labelling of G. So G is 2-odd graph iff there exists 2-odd labelling of G.

2020 Mathematics Subject Classification: 05C78.

Keywords: Graph, Graph labeling, 2-odd labeling, 2-odd graph. Received May 27, 2022; Accepted June 1, 2022 290

Moreover, h(xy) may still be either 2 or odd if xy is not an line of G. For more results on 2-odd graphs, one can refer to [1, 2, and 4].

2. Main Results

This section is devoted for deriving 2-odd labeling of various classes of graphs, besides recalling few relevant concepts for the study undertaken.

Definition 1. [4] The graph $Pl_n = (V, E)$, where $V\{1, 2, ..., n\}$ and $E = (K_n)/\{(k, l)3 \le n-2 \text{ and } k+2 \le l \le n\}$ is a planar graph having maximum number of lines, with n nodes. The planar graph Pl_n having maximum number of lines with n nodes is obtained by removal of [(n-4)(n-3)]/2 lines from K_n , The number of lines in $Pl_n : n \ge 5$ is 3(n-2). One such example Pl_{10} class graph is shown in Figure 1.

Figure 1. Planar graph *Pl*₁₀.

Theorem 1. The planar graph Pl_n allows 2-odd labeling.

Proof. Let Pl_n be the planar graph with $V(Pl_n) = V_1 UV_2$, where $V_1 = \{u_1, u_2\}$ and $V_2 = \{v_i; 1 \le i \le n\}$. Now define an injective function $f: V(Pl_n) \to Z$ as given: let $f(u_1) = 1$ and $f(u_1) = -1$. Then $f(v_i) = 2i; 1 \le i \le n$. One can see that $|f(u_1) - f(u_2)| = 2$ and $|f(u_1) - f(v_i)|$

are odd numbers and $|f(u_2) - f(v_i)|$ are also odd numbers for all $1 \le i \le n$. Hence *f* is the required 2 – odd labelling of Pl_n .

Figure 2. Planar graph *Pl*₈.

Definition 2 [6]. The friendship graph $F_{r_n}^{(k)}$ is a planar undirected graph with (k+1)n+1 nodes and kn lines connected by connecting n copies of the C_k with a common node.

Theorem 2. $F_{r_n}^{(k)}$ allows 2 - odd labelling $\forall k \ge 3$.

Proof. Let $F_{r_n}^{(k)}$ be on (k+1)n+1 nodes and kn lines. Let v_0 be the central node and $v_i^j: 1 \le i \le k, 1 \le j \le n$ be the nodes on the first cycle, second cycle, and so on up to n^{th} cycle. Now we define a one- to- one labelling $f: V(F_{r_n}^{(k)}) \to Z$ as follows: without loss of generality, let the central node v_0 be labelled with 0, i.e., $f(v_0) = 0$. There arise two cases.

Case (i). The cycle C_k , when k is odd.

Without loss of generality, we label the nodes on the first cycle, starting with the second node, say v_1 (as the first node v_0 is already labelled) by giving 1, for v_2 assign 2, and consecutively up to $(n-1)^{th}$ node assign n-1. Finally for the n^{th} node in the first cycle, we label by adding 2 with $(n-1)^{th}$

label. That is $f(v_n^1) = f(v_{n-1}^1) + 2$. Similarly, we label the second node of the second cycle with $f(v_n^1) + 2$, the third node with $f(v_2^2) + 1$, and so on up to the $(n-1)^{th}$ node of the second cycle. Finally, the nth node of the second cycle is labeled with $f(v_{n-1}^2) + 2$. Proceeding the same for the remaining cycles, see that f is the 2 – odd labeling of $F_{r_n}^{(k)}$.

Case (ii). The cycle C_k , when k is even

The graph thus obtained is a bipartite graph and the result follows from the fact that every bipartite graph is a 2-odd graph.

Figure 3. 2- Odd Labeling of friendship graph.

Figure 4. 2-odd Labeling of friendship graph.

3. Applications of Graph Labeling

Graph theory is used to support selection of materials for designs in engineering and the identification of a system's suitability for

293

remanufacturing. Graph theory might be a more appropriate tool to use the advantages of a product's state-based representation of a manufacturing program's data and information gives. The consequent states along with the manufacturing program and the (inter-) relations between the state characteristics believed to provide an important foundation for graph theory without requiring huge adaptation. For a complete study, one can refer to [7].

4. Conclusion

In this paper 2-odd labeling of some special graphs such as a planar graph, and friendship graph is derived, besides recalling interesting applications of graph theory in manufacturing. A complete characterization of 2-odd graphs is still an open problem for further study.

References

- P. Abirami, A. Parthiban and N. Srinivasan: On 2-Odd Labeling of Graphs, European Journal of Molecular and Clinical Medicine 07(07) (2020), 3914-3918.
- [2] P. Abirami, A. Parthiban, and N. Srinivasan, Some Results on 2-odd Labeling of Graphs, International Journal of Recent Technology and Engineering (IJRTE) 8(5) (2020), 5644-5646.
- [3] V. Govindan and S. Dhivya, Difference Labelling of Jewel Graph, International Journal of Mathematics Trends and Technology (IJMTT) 65(4) (2019), 64-68.
- [4] J. Baskar Babujee, Planar Graphs with Maximum Lines Antimagic Property, The Mathematics Education 37(04) (2003), 194-198.
- [5] S. M. Lee, Graceful Labelling of Mongolian tents and Related Graphs, Congr. Number 50 (1985), 85-96.
- [6] S. Meena and K. Vaithilingam, Prime Labelling of Friendship Graphs, International Journal of Engineering Research and Technology (IJERT) 1(10) (2012), 1-13.
- [7] Thorsten Wuestab, Benjamin Knokea and Klaus-Dieter Thoben, Applying Graph Theory and the Product State Concept in Manufacturing, Procedia Technology 15 (2014), 349-358.