# MAJORITY DOMINATING AND CONNECTED MAJORITY DOMINATING SETS IN THE CORONA AND JOIN OF GRAPHS 

## J. JOSELINE MANORA and T. MUTHUKANI VAIRAVEL

P.G and Research Department of Mathematics<br>Tranquebar Bishop Manickam Lutheran College<br>(Affiliated to Bharathidasan University)<br>Porayar 609307, Tamilnadu, India<br>Department of Mathematics<br>Sir Issac Newton College<br>(Affiliated to Bharathidasan University)<br>Nagapattinam 611102, Tamilnadu, India<br>E-mail: joseline_manora@yahoo.com<br>muthukanivairavel@gmail.com


#### Abstract

In this research article, majority dominating set, connected majority dominating set, majority domination number $\gamma_{M}(G)$ and connected majority domination number $\gamma_{C M}(G)$ for corona graph $G^{\prime}=G \circ H$ of two graphs $G$ and $H$ are determined. Then the relationship among the domination numbers $\gamma\left(G^{\prime}\right), \gamma_{M}\left(G^{\prime}\right)$ and $\gamma_{C M}\left(G^{\prime}\right)$ are studied. Some results are also established for Join of two graphs $G^{J}=G+H$.


## 1. Introduction

Let $G$ be a finite, simple, connected and undirected graph with vertex set $V(G)$ and edge set $E(G)$. Let $G(V, E)$ be a graph with $p=|V(G)|$ and $q=|E(G)|$, denote the number of vertices and edges of a graph $G$. Let $v \in V(G)$. The neighbourhood of $v$ is the set $N_{G}(v)=N(v)$
$=\{u \in V(G): u v \in E(G)\}$. If $X \subseteq V(G)$, then the open neighbourhood of $X$ is the set $N_{G}(X)=N(X)=\bigcup_{v \in X} N_{G}(v)$. The closed neighbourhood of $X$ is $N_{G}[X]=N[X]=X \cup N(X)$. A subset $S$ of $V(G)$ is a dominating set [2] for $G$ if every vertex of $G$ either belongs to $S$ or is adjacent to a vertex of $S$. The minimum cardinality of a minimal dominating set for $G$ is called the domination number of $G$ and is denoted by $\gamma(G)$. A dominating set $S$ is said to be a connected dominating set [6] if the subgraph $\langle S\rangle$ induced by $S$ is connected in $G$. The minimum cardinality of a minimal connected dominating set is called the connected domination number of $G$ and is denoted by $\gamma_{c}(G)$.

A subset $S$ of $V(G)$ is a majority dominating set (MD) [4] if at least half of the vertices of $V(G)$ are either belong to $S$ or adjacent to the elements of $S$ i.e., $|N[S]| \geq\left\lceil\frac{V(G)}{2}\right\rceil$. The minimum cardinality of a minimal majority dominating set for $G$ is called majority domination number of $G$ and is denoted by $\gamma_{M}(G)$. This parameter was introduced by and J. Joseline Manora and V. Swaminathan in [5]. Let $G$ be any graph with $p$ vertices and let $u \in V(G)$. Then $u$ is said to be Majority Dominating (MD) vertex if $d(u) \geq\left\lceil\frac{p}{2}\right\rceil-1$.

A subset $S$ of $V(G)$ is a Connected Majority Dominating Set [3] (CMD) if (i) $S$ is a majority dominating set and (ii) the subgraph $\langle s\rangle$ induced by $S$ is connected in $G$. The minimum cardinality of minimal connected majority dominating set for $G$ is called the Connected Majority Domination number of $G$, denoted by $\gamma_{C M}(G)$.

## 2. MD and CMD Sets in the Corona Graphs

Definition 2.1 [1]. The Corona $G \circ H$ of two graphs $G$ and $H$ is the graph obtained by taking one copy of $G$ of order $n$ and $n$ copies of $H$, and then joining the $i^{\text {th }}$ vertex of $G$ to every vertex in the $i^{\text {th }}$ copy of $H$. For every $v \in V(G)$, denote by $H^{v}$ the copy of $H$ whose vertices are attached one by one to the vertex $v$. Subsequently, denote by $v+H^{v}$ the subgraph of the
corona $G \circ H$ corresponding to the join $\langle\{v\}\rangle+H^{v}, v \in V(G)$.
Example 2.2. Let the graphs $G=C_{4}$ and $H=K_{3}$ and let $G^{\prime}=G \circ H$. i.e., $G^{\prime}=C_{4} \circ K_{3}$.


Figure 2.1
Consider the vertices of $G^{\prime}$ is $V\left(G^{\prime}\right)=\left\{v_{1}, H^{v_{1}}, v_{2}, H^{v_{2}}, v_{3}, H^{v_{3}}, v_{4}, H^{v_{4}}\right\}$ where $H^{v_{i}}$ denotes the $i^{\text {th }}$ copy of $H$ joined to $v_{i}$ of $G$. Let $m=O(G)=4$. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a Dominating Set of $G^{\prime}$. Therefore, $\gamma\left(G^{\prime}\right)=\left|S_{1}\right|=4$. Let $S_{2}=\left\{v_{1}, v_{2}\right\}$ be a MD set and CMD set of $G^{\prime}$. This implies that $\gamma_{M}\left(G^{\prime}\right)=\left|S_{2}\right|=2$. Also, $\gamma_{C M}\left(G^{\prime}\right)=2$. Hence $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$.

Example 2.3. Let $G=P_{7}$ and $H=K_{1}$ and let $G^{\prime}=G \circ H$. Consider the vertex sets $V(G)=\left\{v_{1}, \ldots, v_{7}\right\}$ and $V\left(G^{\prime}\right)=\left\{v_{1}, \ldots, v_{7}, v_{1}^{\prime}, \ldots, v_{7}^{\prime}\right\}$. Here $S_{1}=V(G)$ is a Dominating Set of $G^{\prime}$. Hence, $\gamma\left(G^{\prime}\right)=\left|S_{1}\right|=7$. Let $S_{2}=\left\{v_{2}, v_{5}\right\}$ is a MD set of $G^{\prime}$. Thus, $\gamma_{M}\left(G^{\prime}\right)=\left|S_{2}\right|=2$. Let $S_{3}=\left\{v_{2}, v_{3}, v_{4}\right\}$ is a CMD set of $G^{\prime}$. Hence, $\gamma_{C M}\left(G^{\prime}\right)=3$. Hence $\gamma_{M}\left(G^{\prime}\right)<\gamma_{C M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$.

Example 2.4. Let $G=C_{5}$ and $H=K_{5}$ and let $G^{\prime}=G \circ H$. Consider the vertices of $G^{\prime}$ is $V\left(G^{\prime}\right)=\left\{v_{1}, H^{v_{1}}, v_{2}, H^{v_{2}}, v_{3}, H^{v_{3}}, v_{4}, H^{v_{4}}, v_{5}, H^{v_{5}}\right\}$ and $\left|V\left(G^{\prime}\right)\right|=30$. Let $m=O(G)=5$. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be a Dominating Set of $G^{\prime}$. Therefore, $\gamma\left(G^{\prime}\right)=\left|S_{1}\right|=5$. Let $S_{2}=\left\{v_{1}, v_{4}\right\}$ be a

MD set of $G^{\prime}$. This implies that $\gamma_{M}\left(G^{\prime}\right)=\left|S_{2}\right|=2$. Let $S_{3}=\left\{v_{2}, v_{3}, v_{4}\right\}$ be a CMD set of $G^{\prime}$. Hence, $\gamma_{C M}\left(G^{\prime}\right)=3$. Hence $\gamma_{M}\left(G^{\prime}\right)<\gamma_{C M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$.

## Observations 2.5.

1. For any graph $G$ and $H$, the corona graph $G^{\prime}=G \circ H, \gamma_{M}\left(G^{\prime}\right) \leq\left\lceil\frac{\gamma\left(G^{\prime}\right)}{2}\right\rceil$ and $\gamma_{C M}\left(G^{\prime}\right) \leq\left\lceil\frac{\gamma\left(G^{\prime}\right)}{2}\right\rceil$.
2. For any corona graph $G^{\prime}$, (i) $\gamma_{M}\left(G^{\prime}\right) \leq \gamma_{C M}$ ( $G^{\prime}$ ) (ii) $\gamma_{M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$ (iii) $\gamma_{M}\left(G^{\prime}\right)<\gamma_{C M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$.
3. For any graphs $G$ and $H$ with $O(G)=m$ and $O(H)=n$, if the corona $G^{\prime}=G \circ H$ with $\left|V\left(G^{\prime}\right)\right|=p$ where $p=m n+m$ then $\gamma_{M}\left(G^{\prime}\right) \leq\left\lceil\frac{m}{2}\right\rceil$ and $\gamma_{C M}\left(G^{\prime}\right) \leq\left\lceil\frac{m}{2}\right\rceil$.

Theorem 2.6. Let $G$ be a connected graph and $H$ be any graph with order $m$ and $n$ respectively. Let $G^{\prime}=G \circ H$ and the set $S \subseteq V(G)$ is a MD set of $G^{\prime}$ if and only if $\left[V\left(u+H^{u}\right) \cap S\right]$ is a MD set of $\left(u+H^{u}\right)$ such that $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$, for at least one vertex $u \in V(G)$.

Proof. Let $V\left(G^{\prime}\right)=\left\{u_{1}, H^{u_{1}}, u_{2}, H^{u_{2}}, \ldots, u_{m}, H^{u_{m}}\right\}$. Let $S=\left\{u_{1}\right\}$ be a MD set of $G^{\prime}$. Then $\left|N_{G^{\prime}}[S]\right| \geq\left\lceil\frac{p}{2}\right\rceil$. Let $\left|V\left(G^{\prime}\right)\right|=p=m n+m$. If $u_{1} \in V(G)$ then $\left\{u_{1}\right\}$ is a MD set of $\left(u_{1}, H^{u_{1}}\right)$. Since every dominating set of $G$ is a MD set of $G,\left[V\left(u_{1}+H^{u_{1}}\right) \cap S\right]$ is a MD set of $\left(u_{1}+H^{u_{1}}\right)$. If $\left|N\left[u_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$ then $\left[V\left(u_{1}+H^{u_{1}}\right) \cap S\right]$ is a MD set of $G^{\prime}$, atleast one vertex $u_{1} \in V(G)$.

If not, take $S=\left\{u_{1}, u_{2}\right\}$ is a MD set of $G^{\prime}$. Then $\left[V\left(u_{1}+H^{u_{1}}\right) \cap S\right]$ is a MD set of $\left(u_{1}+H^{u_{1}}\right)$ and $\left[V\left(u_{2}+H^{u_{2}}\right) \cap S\right]$ is a MD set of $\left(u_{2}+H^{u_{2}}\right)$ in which $u_{1}$ dominates at most $(m+n)$ vertices and at least $(n+2)$ vertices
and $u_{2}$ dominates only $n$ vertices. For two vertices $u_{1}, u_{2} \in V(G)$, $\left|N\left[u_{1}\right]+N\left[u_{2}\right]\right| \geq 2 n+2$ such that $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$. If not, continue this argument till we obtain a set $S$ with at least one vertex $u \in V(G)$ such that $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$ and $\left[V\left(u+H^{u}\right) \cap S\right]$ is a MD set of $\left(u+H^{u}\right)$. Conversely, for at most one vertex $u \in V(G),\left[V\left(u+H^{u}\right) \cap S\right]$ is a MD set of $\left(u+H^{u}\right)$ such that $|N[u]| \geq\left\lceil\frac{p}{2}\right\rceil$. It implies that $S=\{u\}$ is a MD set of $G^{\prime}$. Suppose for two vertices $u_{1}, u_{2} \in V(G),\left[V\left(u_{1}+H^{u_{1}}\right) \cap S\right]$ and $\left[V\left(u_{2}+H^{u_{2}}\right) \cap S\right]$ are the MD sets of the subgraphs $\left(u_{1}+H^{u_{1}}\right)$ and ( $\left.u_{2}+H^{u_{2}}\right)$ respectively such that $\left|N\left[u_{1}\right] \cup N\left[u_{2}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$. It implies that $S=\left\{u_{1}, u_{2}\right\}$ is a MD set of $G^{\prime}$. Hence the set $S \subseteq V(G)$ is a MD set of the corona graph $G^{\prime}$.

Corollary 2.7. Let $G$ be a connected graph and $H$ be any graph with order $m$ and $n$ respectively. Let $G^{\prime}=G \circ H$ and the set $S \subseteq V(G)$ is a CMD set of $G^{\prime}$ if and only if $\left[V\left(u+H^{u}\right) \cap S\right]$ is a CMD set of $\left(u+H^{u}\right)$ such that $|N[S]| \geq\left\lceil\left.\frac{p}{2} \right\rvert\,\right.$. and the induced subgraph $\langle S\rangle$ is connected for at least one vertex $u \in V(G)$.

Corollary 2.8. Let $G$ be any connected graph and $H$ be any graph with $m$ and $n$ vertices respectively. Then $\gamma_{M}\left(G^{\prime}\right) \leq\left\lceil\frac{m}{2}\right\rceil$ and $\gamma_{C M}\left(G^{\prime}\right) \leq\left\lceil\frac{m}{2}\right\rceil$.

$$
\text { 3. } \gamma_{M}\left(G^{\prime}\right) \text { and } \gamma_{C M}\left(G^{\prime}\right) \text { for Some Classes of Graphs }
$$

In this section, it is worth noting that if $G$ and $H$ are connected and nontrivial graph then $\gamma_{M}\left(G^{\prime}\right) \geq 1$ and $\gamma_{C M}\left(G^{\prime}\right) \geq 1$.

Proposition 3.1. Let $G=K_{m}$ be a complete graph of $m$ vertices and $=K_{1}$. Then $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=1$, where $G^{\prime}=G \circ H$.

Proposition 3.2. Let $G=K_{4}$ and $H$ be any complete graph with $n \geq 3$. Then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=2$ and $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=\frac{\gamma\left(G^{\prime}\right)}{2}$.

Corollary 3.3. When $n=1,2, \gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=1$.
Corollary 3.4. For $G^{\prime}=K_{4} \circ K_{n}, n \geq 3, \gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=\frac{\gamma\left(G^{\prime}\right)}{2}$.
Proof. Since $\gamma\left(G^{\prime}\right)=4$, by the above theorem, $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=2$.
Proposition 3.5. Let $G=K_{5}$ and $H=K_{n}$ where $G^{\prime}=K_{5} \circ K_{n}$. Then
(i) $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=2$, if $2 \leq n \leq 5$.
(ii) $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=3$, if $n \geq 6$.

Proposition 3.6. Let $G=S\left(K_{1, t}\right)$ be a subdivision of a star and $H=K_{1}$. Then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=\left\lceil\frac{t-1}{2}\right\rceil+1$.

Corollary 3.7. Let $G=K_{1, m}$ be a star with $(m+1)$ vertices. Then $\gamma_{M}\left(G \circ K_{1}\right)=\gamma_{C M}\left(G \circ K_{1}\right)=1$.

Proposition 3.8. Let $G=D_{r, s}, r \leq s$ be a double star with $m=(r+s+2)$ vertices and $H=K_{1}$. Then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=2$.

Proof. Let $O(G)=m=(r+s+2)$ and $O(H)=1$ with $p=2(r+s+2)$. Let the corona $G^{\prime}=\left(G \circ K_{1}\right)=\left(D_{r, s} \circ K_{1}\right)$. There are two vertices $u_{1}$ and $u_{2}$ with $r$ and $s$ pendants respectively in $G$.

Case (i): If $r=s=1$ pendant at each vertices $u_{1}$ and $u_{2}$ with $m=4$ and $p=8$ then $u_{1}$ dominates $(r+3)=4$ vertices. This implies that $\left|N\left[u_{1}\right]\right|=4=\frac{p}{2}$. Therefore $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=1$.

Case (ii): When $r, s \geq 2$ and $r=s$. In $G^{\prime}$, the vertex $u_{1}$ dominates $(r+3)$ and $u_{2}$ dominates $(s+1)$ vertices.

Choose $S=\left\{u_{1}, u_{2}\right\}$. Then $|N[S]|=r+s+4>\frac{p}{2}$. Since $u_{1}$ and $u_{2}$ are adjacent, $S$ is a MD set for $G^{\prime}$. Therefore $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=|S|=2$.

Case (iii): When $r, s \geq 2$ and $r<s$ and $s \geq r+1$. In this case, the vertex $u_{2}$ dominates $(s+3)$ and $u_{1}$ dominates $(r+1)$ vertices. Therefore $\left|N\left[u_{2}\right]\right|=s+3<\frac{p}{2}$. Then choose $S=\left\{u_{2}, u_{2}\right\}$ with $|N[S]|=(s+3)$ $+(r+1)=r+s+4>\frac{p}{2}$. This implies that $S$ is a MD and CMD set of $G^{\prime}$. Hence $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right)=2$.

Proposition 3.9. Let $G=W_{m}$ and $H=K_{1}$ with $O(G)=m$. Then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=1$.

Proposition 3.10. Let $G$ be a totally disconnected graph of $m$ vertices and $H=K_{1}$. Then $\gamma_{M}(G \circ H)=\left\lceil\frac{p}{4}\right\rceil$ and $\gamma_{C M}(G \circ H)$ does not exist.

Proposition 3.11. Let $G=r K_{2}, r \geq 1$ and $H=K_{1}$. Then $\gamma_{M}(G \circ H)=\left\lceil\frac{p}{6}\right\rceil$ and $\gamma_{C M}(G \circ H)$ does not exist.

Proposition 3.12 Let $G=C_{4}$ and $=K_{n}, n \geq 2$. Then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=2$ and $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=\frac{\gamma(G \circ H)}{2}$.

Proposition 3.13. Let $G=C_{m}$ be a cycle of $m$ vertices, $m \geq 3$ and $H=K_{1}$. If $|V(G \circ H)|=p$, then
(i) $\gamma_{M}\left(G^{\prime}\right)=\left\lceil\frac{p}{8}\right\rceil$ and

Proof. Let $G=C_{m}, m \geq 3$ and $H=K_{1}$. Then $G^{\prime}=G \circ H$. Let $V\left(G^{\prime}\right)=\left\{v_{1}, \ldots, v_{m}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ where $v_{i}$ be the inner vertices and $v_{i}^{\prime}$ be the pendants in $G^{\prime}$.

Case (i): Let $S=\left\{v_{1}, \ldots, v_{\left\lceil\frac{p}{8}\right\rceil}\right\} \quad$ with $\quad|S|=\left\lceil\left.\frac{p}{8} \right\rvert\,=t\right.$. Then $|N[S]|=\sum_{i=1}^{t} d\left(v_{i}\right)+t=3 t+t=4 t=4\left\lceil\frac{p}{8}\right\rceil \geq\left\lceil\frac{p}{2}\right\rceil$. Therefore $S$ is a MD set of $G^{\prime}$. Hence, $\gamma_{M}\left(G^{\prime}\right) \leq|S|=\left\lceil\frac{p}{8}\right\rceil$.

Suppose $\quad\left|S^{\prime}\right|=|S|-1=t-1$. Then $\quad\left|N\left[S^{\prime}\right]\right|=\sum_{i=1}^{t-1} d\left(v_{i}\right)+(t-1)$ $=4 t-4=4(t-1)=4\left(\left\lceil\frac{p}{8}\right\rceil-1\right)<\frac{p}{2}$. (Since $p$ is even). Therefore $S^{\prime}$ is not a MD set of $G^{\prime}$.

Hence, $\gamma_{M}\left(G^{\prime}\right) \geq|S|=\left\lceil\frac{p}{8}\right\rceil$. It implies that $\gamma_{M}\left(G^{\prime}\right)=\left\lceil\frac{p}{8}\right\rceil$.
Case (ii): When $p \equiv 2(\bmod 4)$.
Subcase (a). Let $S=\left\{v_{1}, v_{\left\lfloor\frac{p}{4}\right\rfloor}\right\} \quad$ with $\quad|S|=\left\lfloor\frac{p}{4}\right\rfloor=t$. Then $|N[S]|=\sum_{i=1}^{t-1} d\left(v_{i}\right)-1=3 t-1=\frac{p}{2}+1>\frac{p}{2}, p \equiv 2(\bmod 4)$. Since the induced subgraph $\langle S\rangle$ is connected, $S$ a CMD set of $G^{\prime}$. Hence,

$$
\begin{equation*}
\gamma_{C M}\left(G^{\prime}\right) \leq|S|=\left\lfloor\frac{p}{4}\right\rfloor \tag{1}
\end{equation*}
$$

Suppose $\quad\left|S^{\prime}\right|=|S|-1=t-1 . \quad$ Then $\quad\left|N\left[S^{\prime}\right]\right|=\sum_{i=1}^{t-1} d\left(v_{i}\right)-1=$ $3 t-4=3\left\lfloor\frac{p}{4}\right\rfloor-4<\frac{p}{2}$. (Since $p$ is even). Therefore $S^{\prime}$ is not a CMD set of $G^{\prime}$. Hence,

$$
\begin{equation*}
\gamma_{C M}\left(G^{\prime}\right) \geq|S|=\left\lfloor\frac{p}{4}\right\rfloor \tag{2}
\end{equation*}
$$

From (1) and (2), $\gamma_{C M}\left(G^{\prime}\right)=\left\lfloor\frac{p}{4}\right\rfloor$.
Subcase (b) When $p \equiv 0(\bmod 4)$.

Proceeding the same discussion as in subcase (a), we conclude that $\gamma_{C M}\left(G^{\prime}\right)=\left\lfloor\frac{p-1}{4}\right\rfloor$, if $p \equiv o(\bmod 4)$.

Corollary 3.14. Let $G=P_{m}$ be a path of $m$ vertices, $m \geq 3$ and $H=K_{1}$. If $\quad|V(G \circ H)|=p, \quad$ then $\quad$ (i) $\quad \gamma_{M}\left(G^{\prime}\right)=\left\lceil\frac{p}{8}\right\rceil \quad$ and $\quad$ (ii) $\gamma_{C M}\left(G^{\prime}\right)=\left\{\begin{array}{l}\left\lfloor\frac{p}{4}\right\rfloor, \text { if } p \equiv 2(\bmod 4) \\ \left\lfloor\frac{p-1}{4}\right\rfloor, \text { if } p \equiv 0(\bmod 4)\end{array}\right.$.
4. Relationships among $\gamma(G \circ H), \gamma_{M}(G \circ H)$ and $\gamma_{C M}(G \circ H)$

Theorem 4.1. If a connected graph $G$ has at least one full degree vertex $u$ with $O(G)=m$ and $O(H)=1$ if and only if $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=1$.

Proof. Let $O(G)=m$ and $H=K_{1}$. Then $\left|V\left(G^{\prime}\right)\right|=2 m$. If $G$ has only one full degree vertex $u$ then $|N[u]|=m$ and $u$ dominates $(m+1)$ vertices of $G^{\prime}$. This implies that $S=\{u\}$ is a MD and CMD set of $G^{\prime}$. Suppose $G$ has two full degree vertex $u_{1}$ and $u_{2}$. Then $\left|N\left[u_{1}\right]\right|=m+1$ and $\left|N\left[u_{2}\right]\right|=m+1$. But $u_{1}$ dominates $(m+1)$ vertices and $u_{2}$ dominates $(m+1)$ vertices of $G^{\prime}$. This implies $S=\left\{u_{1}\right\}$ or $S=\left\{u_{2}\right\}$ is a MD and CMD set of $G^{\prime}$. If the graph $G$ has more than two full degree vertices then each vertex of $G$ dominates $(m+1)$ vertices of $G^{\prime}=G \circ K_{1}, S=\{u\}$, for any vertex $u \in V(G)$ is a MD and CMD set of $G^{\prime}$. This implies that $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=1$. The converse is obvious.

Proposition 4.2. If a graph $G$ has exactly two $M D$ vertices and others are pendants such that $O(G)=m, m \geq 6$, then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=2$, where $H=K_{1}$.

Theorem 4.3. If $O(G)<O(H), G$ and $H$ are complete then $\gamma_{M}(G \circ H)=\gamma_{C M}(G \circ H)=\left\lceil\frac{\gamma(G \circ H)}{2}\right\rceil$.

Proof. Let $O(G)=m$ and $O(H)=n \quad$ and $\quad G^{\prime}=G \circ H$. Let $V(G)=\left\{u_{1}, \ldots, u_{m}\right\}$ and $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. Consider $p=m n+m=m(n+1)$ and $\left\lceil\frac{p}{2}\right\rceil=\left\lceil\frac{m(n+1)}{2}\right\rceil=\frac{m n}{2}+\frac{m}{2}$. In $G^{\prime}$, a vertex $u_{1}$ dominates $(m+n)$ vertices i.e., $\left|N\left[u_{1}\right]\right|=m+n$ and $u_{2}, u_{3}, \ldots$ dominates $n$ vertices only since they are adjacent. Let $S=\left\{u_{1}, u_{\left\lceil\frac{m}{2}\right\rceil}\right\} \subseteq V(G)$. Then $|N[S]|=n\left(\left\lceil\frac{m}{2}\right\rceil-1\right)+n+m=\frac{m n}{2}+m>\frac{m n}{2}+\frac{m}{2}=\left\lceil\frac{p}{2}\right\rceil$. It implies that $S$ is a MD set of $G^{\prime}$. Hence, $\gamma_{M}\left(G^{\prime}\right) \leq|S|=\left\lceil\frac{m}{2}\right\rceil=\left\lceil\frac{\gamma\left(G^{\prime}\right)}{2}\right\rceil$. Since all vertices are adjacent in $S$ and $S$ is a CMD set of $G^{\prime}$. It implies that $\gamma_{C M}\left(G^{\prime}\right)=\left\lceil\frac{\gamma\left(G^{\prime}\right)}{2}\right\rceil$.

Corollary 4.4. If $O(G) \geq O(H), G$ and $H$ are complete then $\gamma_{M}\left(G^{\prime}\right)=\gamma_{C M}\left(G^{\prime}\right) \leq\left\lceil\frac{\gamma\left(G^{\prime}\right)}{2}\right\rceil$, where $G^{\prime}=G \circ H$.

Result 4.5. There exists a graph $G^{\prime}=G \circ H$ with $O(G)=m$ and $O(H)=1 \quad$ for $\quad$ which $\quad$ (i) $\quad \gamma\left(G^{\prime}\right)=m \quad$ (ii) $\quad \gamma_{M}\left(G^{\prime}\right)=\left\lceil\frac{m}{4}\right\rceil$,
$\gamma_{C M}\left(G^{\prime}\right)=\left\{\begin{array}{l}\left\lfloor\frac{m}{2}\right\rfloor, \text { if } m \equiv 1(\bmod 2) \\ \frac{m}{2}-1, \text { if } m \equiv 0(\bmod 2)\end{array}\right.$.
Proof. Let $O(G)=m$ and $G^{\prime}=G \circ K_{1}$. Then $\left|V\left(G^{\prime}\right)\right|=p=2 m$. There is a graph $G=P_{m}$ and the corona graph $G^{\prime}=P_{m} \circ K_{1}$. It implies that $\gamma\left(G^{\prime}\right)=m$.

Case (i): Since each middle vertex dominates 4 vertices of $G^{\prime}$ with the distance $d\left(v_{i}, v_{j}\right) \geq 3, i \neq j, v_{i}, v_{j} \in V(G),\left\lceil\frac{m}{4}\right\rceil$ vertices needed to dominate $\left\lceil\frac{p}{4}\right\rceil$ vertices of $G^{\prime}$. Hence $\gamma_{M}\left(G^{\prime}\right)=\left\lceil\frac{m}{4}\right\rceil$.

Case (ii): Choose the middle vertices are adjacently in $G^{\prime}$. Then $\left\lfloor\frac{m}{2}\right\rfloor$ vertices needed to dominate $\left\lceil\frac{p}{2}\right\rceil$ vertices of $G^{\prime}$. Hence, $\gamma_{C M}\left(G^{\prime}\right)=\left\lfloor\frac{m}{2}\right\rfloor$ if $m \equiv 1(\bmod 2)$. Again applying the same argument, we get, $\gamma_{C M}\left(G^{\prime}\right)=\frac{m}{2}-1$, if $m \equiv 0(\bmod 2)$.

Hence, we obtain an inequality $\gamma_{M}\left(G^{\prime}\right) \leq \gamma_{C M}\left(G^{\prime}\right)<\gamma\left(G^{\prime}\right)$.
Result 4.6. There exists a graph $G^{\prime}=G \circ H$ with $O(G)=m+1$ and $O(H)=1$ for which $\gamma\left(G^{\prime}\right)-\gamma_{M}\left(G^{\prime}\right)=m$ and $\gamma\left(G^{\prime}\right)-\gamma_{C M}\left(G^{\prime}\right)=m$.

Proof Let $G^{\prime}=G \circ H$ with $O(G)=m+1$ and $O(H)=1$. Then $\left|V\left(G^{\prime}\right)\right|=p=2 m+2$. There exists a graph $G=K_{1, m}$ and $H=K_{1}$ with $p=2 m+2$. Then the corona $G^{\prime}=\left(K_{1, m} \circ K_{1}\right)$. By the known result in [1], $\gamma\left(G^{\prime}\right)=m+1(1)$

Let $u$ be a center vertex of $G$ with $d(u)=m+1$ and $|N[u]|=m+2>\frac{p}{2}$. This implies that $S=\{u\}$ is a MD and CMD set of $G^{\prime}$. Hence $\gamma_{M}\left(G^{\prime}\right)=1=\gamma_{C M}\left(G^{\prime}\right)(2)$

From (1) and (2), $\gamma\left(G^{\prime}\right)-\gamma_{M}\left(G^{\prime}\right)=m$ and $\gamma\left(G^{\prime}\right)-\gamma_{C M}\left(G^{\prime}\right)=m$.

## 5. MD and CMD Sets in Join of Two Graphs

Definition 5.1 [1]. The join $G+H$ of two graphs $G$ and $H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)$ $=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$. It is denoted by $G^{J}=(G+H)$.

Proposition 5.2. If $G$ and $H$ both are any two connected graphs then $\gamma_{M}\left(G^{J}\right)=\gamma_{C M}\left(G^{J}\right)=1$.

Proof. Let $V(G)=\left\{u_{1}, \ldots, u_{m}\right\}$ and $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then $d^{J}\left(u_{1}\right)=n+d\left(u_{1}\right)$ and $d^{J}\left(v_{1}\right)=m+d\left(v_{1}\right)$. A vertex $u_{1} \in V(G)$ dominates
$\left(n+1+d\left(u_{1}\right)\right)$ vertices of $G^{J}$ and $v_{1} \in V(H)$ dominates $\left(m+1+d\left(v_{1}\right)\right)$ vertices of $G^{J}$.

Case (i): When $m=n$. Then $V\left(G^{J}\right)=p=2 m$. Certainly, there exists at least one MD vertex in $G^{J}$. It implies that $S=\left\{u_{1}\right\}$ is a MD (or CMD) set of $G^{J}$. Hence $\gamma_{M}\left(G^{J}\right)=\gamma_{C M}\left(G^{J}\right)=1$.

Case (ii): When $m<n$, where $n=m+r, r \geq 1$. Then $p=m+n=2 m+r, r \geq 1$. In this case, a vertex $u_{1} \in V(G)$ is adjacent with $n$ vertices adding with its degree $\left(d\left(u_{1}\right)+1\right)$. Therefore, $\left|N\left[u_{1}\right]\right|=n+1+d\left(u_{1}\right)=m+r+1+d\left(u_{1}\right), r \geq 1$. Since $G$ and $H$ are connected $d\left(u_{1}\right) \geq 2$. It implies that $\left|N\left[u_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$ and each vertex $u_{1} \in V(G)$ is a $\mathrm{MD}($ or CMD$)$ set of $G^{J}$. Hence $\gamma_{M}\left(G^{J}\right)=\gamma_{M}\left(G^{J}\right)=1$.

Case (iii): When $m>n$, applying the same argument, each vertex $v_{1} \in V(H)$ is adjacent to $m$ vertices plus $(d(v)+1)$ vertices. It implies that $v_{1}$ is a MD vertex of $G^{J}$. Hence $\gamma_{M}\left(G^{J}\right)=\gamma_{C M}\left(G^{J}\right)=1$.

Corollary 5.3. If the graphs $G$ and $H$ both are complete then $\gamma_{M}(G+H)=\gamma_{M}(G+H)=1$.

Corollary 5.4. If $G$ is any connected graph and $H$ is complete then $\gamma_{M}\left(G^{J}\right)=\gamma_{M}\left(G^{J}\right)=1$.

Corollary 5.5. Let $G=\overline{K_{m}}$ and $H=\overline{K_{n}}$. Then $\gamma_{M}\left(G^{J}\right)=\gamma_{M}\left(G^{J}\right)=1$.
Proof. Since $G^{J}=G+H=K_{m, n}$ a complete bipartite graph, each vertex of $V(G)($ or $V(H))$ is a MD vertex of $G{ }^{J}$.

## 6. Conclusion

In this article, the researcher thus discussed Majority Domination and Connected Majority Domination parameter of a graph G. Also, Majority

Domination number $\gamma_{M}(G)$ and Connected Majority Domination number $\gamma_{C M}(G)$ determined for some classes of Corona and Join of two graphs. Then bounds of $\gamma_{M}(G)$ and $\gamma_{C M}(G)$ are established for corona of complete graph.

## References

[1] E. Go. Carmelito and R. Sergio Jr. Canoy, Domination in the corona and join of graphs, International Forum 6(16) (2011), 763-771.
[2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marces Dekker. Inc, New York, (1998)
[3] J. Joseline Manora and T. Muthukani Vairavel, Connected majority dominating set of a graph, Global Journal of Pure and Applied Mathematics 13(2) (2017), 534-543.
[4] J. Joseline Manora and T. Muthukani Vairavel, Connected majority domatic number of a graph, Malaya Journal of Matematik 1 (2019), 52-56.
[5] J. Joseline Manora and V. Swaminathan, Majority dominating sets in graphs I, Jamal Academic Research Journal 3(2) (2006), 75-82.
[6] J. Joseline Manora and V. Swaminathan, Results on majority dominating sets, Scientia Magna, Dept. of Mathematics, Northwest University, X'tian, P.R. China 7(3) (2011), 5358.
[7] E. Sampathkumar and H. B. Walikar, The connected domination of a graph, Jour. Math. Phy. Sci. 13(6), (1979).

