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Abstract 

In this research article, majority dominating set, connected majority dominating set, 

majority domination number  GM  and connected majority domination number  GCM  for 

corona graph HGG   of two graphs G and H are determined. Then the relationship among 

the domination numbers    GG M
 ,  and  GCM

  are studied. Some results are also 

established for Join of two graphs .HGG
J

  

1. Introduction 

Let G be a finite, simple, connected and undirected graph with vertex set 

 GV  and edge set  .GE  Let  EVG ,  be a graph with  GVp   and 

  ,GEq   denote the number of vertices and edges of a graph G. Let 

 .GVv   The neighbourhood of v is the set    vNvN G   
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     .: GEuvGVu   If  ,GVX   then the open neighbourhood of X is 

the set       Xv GG vNXNXN


 .  The closed neighbourhood of X is 

     .XNXXNXN G   A subset S of  GV  is a dominating set [2] for G 

if every vertex of G either belongs to S or is adjacent to a vertex of S. The 

minimum cardinality of a minimal dominating set for G is called the 

domination number of G and is denoted by  .G  A dominating set S is said to 

be a connected dominating set [6] if the subgraph S  induced by S is 

connected in G. The minimum cardinality of a minimal connected dominating 

set is called the connected domination number of G and is denoted by  .Gc  

A subset S of  GV  is a majority dominating set (MD) [4] if at least half of 

the vertices of  GV  are either belong to S or adjacent to the elements of S 

i.e.,  
 

.
2 











GV
SN  The minimum cardinality of a minimal majority 

dominating set for G is called majority domination number of G and is 

denoted by  .GM  This parameter was introduced by and J. Joseline 

Manora and V. Swaminathan in [5]. Let G be any graph with p vertices and 

let  .GVu   Then u is said to be Majority Dominating (MD) vertex if 

  .1
2











p
ud  

A subset S of  GV  is a Connected Majority Dominating Set [3] (CMD) if 

(i) S is a majority dominating set and (ii) the subgraph S  induced by S is 

connected in G. The minimum cardinality of minimal connected majority 

dominating set for G is called the Connected Majority Domination number of 

G, denoted by  .GCM  

2. MD and CMD Sets in the Corona Graphs 

Definition 2.1 [1]. The Corona HG   of two graphs G and H is the 

graph obtained by taking one copy of G of order n and n copies of H, and then 

joining the ith vertex of G to every vertex in the ith copy of H. For every 

 ,GVv   denote by v
H  the copy of H whose vertices are attached one by 

one to the vertex v. Subsequently, denote by v
Hv   the subgraph of the 
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corona HG   corresponding to the join    ., GVvHv
v

  

Example 2.2. Let the graphs 4CG   and 3KH   and let .HGG   

i.e., .34 KCG   

 

Figure 2.1 

Consider the vertices of G   is    4321 ,,,,,,, 4321

vvvv
HvHvHvHvGV   

where iv
H  denotes the ith copy of H joined to iv  of G. Let   .4 GOm  Let 

 43211 ,,, vvvvS   be a Dominating Set of .G   Therefore,   .41  SG  

Let  212 , vvS   be a MD set and CMD set of .G   This implies that 

  .22  SGM  Also,   .2 GCM  Hence      .GGG CMM
  

Example 2.3. Let 7PG   and 1KH   and let .HGG   Consider the 

vertex sets    71 ,, vvGV   and     .,,,,, 7171 vvvvGV    Here 

 GVS 1  is a Dominating Set of .G   Hence,   .71  SG  Let 

 522 , vvS   is a MD set of .G   Thus,   .22  SGM  Let 

 4323 ,, vvvS   is a CMD set of .G   Hence,   .3 GCM  Hence 

     .GGG CMM
  

Example 2.4. Let 5CG   and 5KH   and let .HGG   Consider 

the vertices of G   is    54321 ,,,,,,,,, 54321

vvvvv
HvHvHvHvHvGV   

and   .30GV  Let   .5 GOm  Let  543211 ,,,, vvvvvS   be a 

Dominating Set of .G   Therefore,   .51  SG  Let  412 , vvS   be a 
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MD set of .G   This implies that   .22  SGM  Let  4323 ,, vvvS   be 

a CMD set of .G   Hence,   .3 GCM  Hence      .GGG CMM
  

Observations 2.5. 

1. For any graph G and H, the corona graph 

 
 









 


2
,

G
GHGG M  and  

 
.

2 







 


G
GCM  

2. For any corona graph ,G   (i)    GG CMM
  (ii)    GGM

  (iii) 

     .GGG CMM
   

3. For any graphs G and H with   mGO   and   ,nHO   if the corona 

HGG   with   pGV   where mmnp   then  









2

m
GM  and 

  .
2 








m
GCM  

Theorem 2.6. Let G be a connected graph and H be any graph with order 

m and n respectively. Let HGG   and the set  GVS   is a MD set of G   

if and only if    SHuV
u

  is a MD set of  
u

Hu   such that 

  ,
2 








p
SN  for at least one vertex  .GVu   

Proof. Let     .,,,,,, 21
21

mu

m

uu
HuHuHuGV   Let  1uS   be a 

MD set of .G   Then   .
2 








p
SN G  Let   .mmnpGV   If 

 GVu 1  then  1u  is a MD set of  ., 1
1

u
Hu  Since every dominating set of 

G is a MD set of    SHuVG
u

1
1,   is a MD set of  .1

1

u
Hu   If 

 









2
1

p
uN  then    SHuV

u
1

1   is a MD set of ,G   atleast one vertex 

 .1 GVu   

If not, take  21 , uuS   is a MD set of .G   Then    SHuV
u

1
1    is a 

MD set of  1
1

u
Hu   and    SHuV

u
2

2   is a MD set of  2
2

u
Hu    in 

which 1u  dominates at most  nm   vertices and at least  2n  vertices 



MAJORITY DOMINATING AND CONNECTED MAJORITY  

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021 

653 

and 2u  dominates only n vertices. For two vertices  ,, 21 GVuu   

    2221  nuNuN  such that   .
2 








p
SN  If not, continue this 

argument till we obtain a set S with at least one vertex  GVu   such that 

 









2

p
SN  and    SHuV

u
  is a MD set of  .

u
Hu   Conversely, for 

at most one vertex      SHuVGVu
u

 ,  is a MD set of  
u

Hu   such 

that   .
2 








p
uN  It implies that  uS   is a MD set of .G   Suppose for two 

vertices      SHuVGVuu
u

1
121 ,,   and    SHuV

u
2

2   are the MD 

sets of the subgraphs  1
1

u
Hu   and  2

2

u
Hu   respectively such that 

    .
2

21 








p
uNuN   It implies that  21 , uuS   is a MD set of .G   

Hence the set  GVS   is a MD set of the corona graph .G   

Corollary 2.7. Let G be a connected graph and H be any graph with order 

m and n respectively. Let HGG   and the set  GVS   is a CMD set of 

G   if and only if    SHuV
u

  is a CMD set of  
u

Hu   such that 

  .
2 








p
SN  and the induced subgraph S  is connected for at least one 

vertex  .GVu   

Corollary 2.8. Let G be any connected graph and H be any graph with m 

and n vertices respectively. Then  









2

m
GM  and   .

2 








m
GCM   

3.  GM
  and  GCM

  for Some Classes of Graphs 

In this section, it is worth noting that if G and H are connected and non-

trivial graph then   1 GM  and   .1 GCM  

Proposition 3.1. Let mKG   be a complete graph of m vertices and 

.1K  Then     ,1 GG CMM  where .HGG    
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Proposition 3.2. Let 4KG   and H be any complete graph with .3n  

Then     2 HGHG CMM   and    
 

.
2

G
GG CMM


  

Corollary 3.3. When     .1,2,1  GGn CMM   

Corollary 3.4. For    
 

.
2

,3,4

G
GGnKKG CMMn


    

Proof. Since   ,4 G  by the above theorem,     .2 GG CMM  

Proposition 3.5. Let 5KG   and nKH   where .5 nKKG   Then 

(i)     ,2 GG CMM  if .52  n  

(ii)     ,3 GG CMM  if .6n  

Proposition 3.6. Let  tKSG ,1  be a subdivision of a star and 

.1KH   Then     .1
2

1








 


t
HGHG CMM   

Corollary 3.7. Let mKG ,1  be a star with  1m  vertices. Then 

    .111  KGKG CMM   

Proposition 3.8. Let srDG sr  ,,  be a double star with 

 2 srm  vertices and .1KH   Then     .2 HGHG CMM    

Proof. Let    2 srmGO  and   1HO  with  .22  srp  

Let the corona    .1,1 KDKGG sr    There are two vertices 1u  and 2u  

with r and s pendants respectively in G. 

Case (i): If 1 sr  pendant at each vertices 1u  and 2u  with 4m  

and 8p  then 1u  dominates   43 r  vertices. This implies that 

  .
2

41

p
uN   Therefore     .1 GG CMM  

Case (ii): When 2, sr  and .sr   In ,G   the vertex 1u  dominates 

 3r  and 2u  dominates  1s  vertices. 

Choose   ., 21 uuS   Then   .
2

4
p

srSN   Since 1u  and 2u  are 

adjacent, S is a MD set for .G   Therefore     .2 SGG CMM  
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Case (iii): When 2, sr  and sr   and .1 rs  In this case, the 

vertex 2u  dominates  3s  and 1u  dominates  1r  vertices. Therefore 

  .
2

32

p
suN   Then choose  22 , uuS   with    3 sSN  

  .
2

41
p

srr   This implies that S is a MD and CMD set of .G   

Hence     .2 GG CMM  

Proposition 3.9. Let mWG   and 1KH   with   .mGO   Then 

    .1 HGHG CMM   

Proposition 3.10. Let G be a totally disconnected graph of m vertices and 

.1KH   Then  









4

p
HGM   and  HGCM   does not exist. 

Proposition 3.11. Let 1,2  rKrG  and .1KH   Then 

 









6

p
HGM   and  HGCM   does not exist. 

Proposition 3.12 Let 4CG   and .2,  nK n  Then 

    2 HGHG CMM   and    
 

.
2

HG
HGHG CMM





   

Proposition 3.13. Let mCG   be a cycle of m vertices, 3m  and 

.1KH   If   ,pHGV   then  

(i)  









8

p
GM  and  

(ii)  

 

 

.

4mod0,
4

1

4mod2,
4


















 












pif
p

pif
p

GCM   

Proof. Let 3,  mCG m  and .1KH   Then .HGG   Let 

   mm vvvvGV  ,,,,, 11   where iv  be the inner vertices and iv   be the 

pendants in .G   
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Case (i): Let  










8

1 ,, pvvS   with .
8

t
p

S 







  Then 

     

















t

i i

pp
ttttvdSN

1
.

28
443  Therefore S is a MD set 

of .G   Hence,   .
8 








p
SGM  

Suppose .11  tSS  Then      





1

1
1

t

i i tvdSN  

  .
2

1
8

41444
pp

tt 
















  (Since p is even). Therefore S   is not a 

MD set of .G    

Hence,   .
8 








p
SGM  It implies that   .

8 








p
GM  

Case (ii): When  .4mod2p   

Subcase (a). Let  










4

1 , pvvS  with .
4

t
p

S 







  Then 

     





1

1
.4mod2,

2
1

2
131

t

i i p
pp

tvdSN  Since the induced 

subgraph S  is connected, S a CMD set of .G   Hence, 

  .
4 








p
SGCM  (1). 

Suppose .11  tSS  Then    





1

1
1

t

i ivdSN  

.
2

4
4

343
pp

t 







  (Since p is even). Therefore S   is not a CMD set of 

.G   Hence, 

 









4

p
SGCM  (2). 

From (1) and (2),   .
4 








p
GCM   

Subcase (b) When  .4mod0p  
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Proceeding the same discussion as in subcase (a), we conclude that 

  ,
4

1







 


p
GCM  if  .4modop    

Corollary 3.14. Let mPG   be a path of m vertices, 3m  and 

.1KH   If   ,pHGV   then (i)  









8

p
GM  and (ii) 

 

 

 

.

4mod0,
4

1

4mod2,
4


















 












pif
p

pif
p

GCM   

4. Relationships among    HGHG M   ,  and  HGCM   

Theorem 4.1. If a connected graph G has at least one full degree vertex u 

with   mGO   and   1HO  if and only if     .1 HGHG CMM   

Proof. Let   mGO   and .1KH   Then   .2mGV   If G has only 

one full degree vertex u then   muN   and u dominates  1m  vertices of 

.G   This implies that  uS   is a MD and CMD set of .G   Suppose G has two 

full degree vertex 1u  and .2u  Then   11  muN  and   .12  muN  

But 1u  dominates  1m  vertices and 2u  dominates  1m  vertices of .G   

This implies  1uS   or  2uS   is a MD and CMD set of .G   If the graph G 

has more than two full degree vertices then each vertex of G dominates 

 1m  vertices of   ,,1 uSKGG    for any vertex  GVu   is a MD 

and CMD set of .G   This implies that     .1 HGHG CMM   The 

converse is obvious. 

Proposition 4.2. If a graph G has exactly two MD vertices and others are 

pendants such that   ,6,  mmGO  then     ,2 HGHG CMM   

where .1KH   

Theorem 4.3. If     GHOGO ,  and H are complete then 

   
 

.
2 








 


HG
HGHG CMM


  
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Proof. Let   mGO   and   nHO   and .HGG   Let 

   muuGV ,,1   and     .,,1 nvvHV   Consider  1 nmmmnp  

and 
 

.
222

1

2

mmnnmp










 








  In ,G   a vertex 1u  dominates  nm   

vertices i.e.,   nmuN 1  and ,, 32 uu  dominates n vertices only since 

they are adjacent. Let    .,

2

1 GVuuS m 








 Then 

 
2

1
2

mn
mn

m
nSN 

















 .

222 








pmmn
m  It implies that S 

is a MD set of .G   Hence,  
 

.
22 








 











Gm
SGM  Since all vertices 

are adjacent in S and S is a CMD set of .G   It implies that 

 
 

.
2 








 


G
GCM  

Corollary 4.4. If     GHOGO ,  and H are complete then 

   
 

,
2 








 


G
GG CMM  where .HGG   

Result 4.5. There exists a graph HGG   with   mGO   and 

  1HO  for which (i)   mG   (ii)   ,
4 








m
GM  (iii) 

 

 

 

.

2mod0,1
2

2mod1,
2
























mif
m

mif
m

GCM  

Proof. Let   mGO   and .1KGG   Then   .2mpGV   There 

is a graph mPG   and the corona graph .1KPG m   It implies that 

  .mG   

Case (i): Since each middle vertex dominates 4 vertices of G   with the 

distance    









4
,,,,3,

m
GVvvjivvd jiji  vertices needed to dominate 









4

p
 vertices of .G   Hence   .

4 








m
GM  
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Case (ii): Choose the middle vertices are adjacently in .G   Then 








2

m
 

vertices needed to dominate 








2

p
 vertices of .G   Hence,  










2

m
GCM  if 

 .2mod1m  Again applying the same argument, we get,   ,1
2


m

GCM  

if  .2mod0m   

Hence, we obtain an inequality      .GGG CMM
  

Result 4.6. There exists a graph HGG   with   1 mGO  and 

  1HO  for which     mGG M   and     .mGG CM   

Proof Let HGG   with   1 mGO  and   .1HO  Then 

  .22  mpGV  There exists a graph mKG ,1  and 1KH   with 

.22  mp  Then the corona  .1,1 KKG m   By the known result in [1], 

   11 mG  

Let u be a center vertex of G with   1 mud  and   .
2

2
p

muN    

This implies that  uS   is a MD and CMD set of .G   Hence 

     21 GG CMM
  

From (1) and (2),     mGG M   and     .mGG CM   

5. MD and CMD Sets in Join of Two Graphs 

Definition 5.1 [1]. The join HG   of two graphs G and H is the graph 

with vertex set      HVGVHGV   and edge set  HGE   

         .,: HVvGVuuvHEGE    It is denoted by  .HGG
J

  

Proposition 5.2. If G and H both are any two connected graphs then 

    .1
J

CM
J

M GG  

Proof. Let    muuGV ,,1   and     .,,1 nvvHV   Then 

   11 udnud
J

  and    .11 vdmvd
J

  A vertex  GVu 1  dominates 
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  11 udn   vertices of J
G  and  HVv 1  dominates   11 vdm    

vertices of .
J

G  

Case (i): When .nm   Then   .2mpGV
J

  Certainly, there exists at 

least one MD vertex in .
J

G  It implies that  1uS   is a MD (or CMD) set of 

.
J

G  Hence     .1
J

CM
J

M GG  

Case (ii): When ,nm   where .1,  rrmn  Then 

.1,2  rrmnmp  In this case, a vertex  GVu 1  is adjacent with 

n vertices adding with its degree    .11 ud  Therefore, 

      .1,11 111  rudrmudnuN  Since G and H are 

connected   .21 ud  It implies that  









2
1

p
uN  and each vertex 

 GVu 1  is a MD(or CMD) set of .
J

G  Hence     .1
J

M
J

M GG  

Case (iii): When ,nm   applying the same argument, each vertex 

 HVv 1  is adjacent to m vertices plus   1vd  vertices. It implies that 1v  

is a MD vertex of .
J

G  Hence     .1
J

CM
J

M GG  

Corollary 5.3. If the graphs G and H both are complete then 

    .1 HGHG MM  

Corollary 5.4. If G is any connected graph and H is complete then 

    .1
J

M
J

M GG  

Corollary 5.5. Let mKG   and .nKH   Then     .1
J

M
J

M GG  

Proof. Since nm
J

KHGG ,  a complete bipartite graph, each 

vertex of  GV  (or  HV  is a MD vertex of .
J

G  

6. Conclusion 

In this article, the researcher thus discussed Majority Domination and 

Connected Majority Domination parameter of a graph G. Also, Majority 



MAJORITY DOMINATING AND CONNECTED MAJORITY  

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021 

661 

Domination number  GM  and Connected Majority Domination number 

 GCM  determined for some classes of Corona and Join of two graphs. Then 

bounds of  GM  and  GCM  are established for corona of complete graph.  
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