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Abstract 

The purpose of the present study is to create an implicit upwind finite difference method to 

calculate the numerical results of a time fractional advection diffusion equation (TFADE). The 

time derivative of fractional order is treated by applying the Caputo-based fractional formula of 

derivative order  .1,0a  The finite difference approximations (FDA) take care of the 

discretization of the differential equation. The study also considers the stability of the fractional 

equation (TFADE). Finally, a Numerical example study is carried out to illustrate the solutions 

achieved for various fractional orders of the time derivative.  

1. Introduction 

The study of the Advection diffusion equation is a very important role due 

to its application in the field of biological applications, weather forecasting, 

porous flows, underground water flows, etc. [1-5]. The replacement of the 

integer-order derivatives to the non-integer order derivatives is known as the 

fractional differential equation. The improvement in the predictions of the 

natural phenomenon such as flow process in various conditions such as in 

aquifer, contaminant transport [6, 7] can be achieved by the fractional order 

approximations. In this study, we explore the Caputo TDADE in one 

dimensional with homogeneous Dirichlet boundary conditions. 
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 Initial values,  

   xuxu 00,   (2) 

and boundary values,  

    .,1;,0 21 ubtuubtu   (3) 

where  time derivative non-integer order, 0v  is the coefficient of 

advection and lD  is the diffusivity. And u is the solute concentration. We 

define 
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txu ,
 is the Caputo derivative for fractional order .  

The Caputo fractional derivatives of the function u, respected to the 

independent variable t is defined as:  
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The term Γ(.) denotes Gamma function.  

In this study, we will examine the numerical approach to the TFADE by 

using upwind scheme of finite difference method (FDM). Assume, the grid 

sizes in time and space for the FDM of the function  txU ,  as  ni
n
i

txUU ,  

for some positive integers M and N are defined by 
M

h
1

  with ihxi   and 

 ntn  respectively, where Mi ,,2,1,0   and .,,2,1 Nn   The time 

fractional derivatives can approximate as follows [5, 9]: 
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where      
.1

11
,
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There are many studies carried out for TFADE. Liu et al., [8] derived a 

complete solution for TFADE by using transformations such as Mellin, 

Laplace and variable transformation. Huang and Liu [9] studied the approach 

of obtaining the solutions for TFADE and TFDE by using the green function 

explicitly. Li and Zeng [10] analyzed the FDA for fractional (time) differential 
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equations. The analysis considers the forward and central differences for the 

time and space terms. The FDA equations are then solved using the matrix 

approach. Zhuang and Liu [11] and Murio [12] focused on implicit schemes to 

achieve the solutions for the TFDE using FDA. They suggested that the 

implicit scheme is stable enough to get the solutions of the TFDE. Liu et al., 

[13] explored the convergence along with the stability of explicit/implicit 

based FDA to obtain the solutions for FADE (time and space fractional). They 

adopted Grunwald and shifted Grunwald formula for Riemman-Liouville 

space fractional derivative and Caputo for time. It is found that the implicit 

scheme is stable in all conditions whereas the explicit one is for a particular 

condition. Also noted that both the schemes are convergent. McLean et al., 

[14] described the well-posedness of TFADE and their scope of study on 

finding the uniqueness and existence of the weaker solutions. There are 

many varieties of the available boundary conditions such as Robin, Dirichlet, 

and Neumann for the achievement of the solutions for TFADE and these are 

discussed by Povstenko [15]. Din et al., [16] considered the expanded version 

of the cubic B spline for the FDA to solve the TFADE implicitly. And other 

methods such as meshless, operational matrix, and convex duality methods 

are available for obtaining the numerical solutions of the TFDADE [17-19]. 

 By the above works of literature and from the author’s knowledge, the 

Caputo time fractional based upwind implicit TFADE solutions are not 

available. The study of the upwind schemes is important where the shock 

waves generated due to the advective terms. Also, this study carries the 

stability criteria for an upwind implicit scheme. 

2. The Fractional Implicit Upwind Method 

The upwind scheme is a numerical discretization method for solving 

hyperbolic-based PDEs. The upwind FDM uses in the upstream orientation to 

appropriate the Advection term (assuming 0v  and can be approximated 

centered difference in second-order spatial derivatives as follows:  
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The TFADE can be numerically approximated by substituting Equation 
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(6) and Equation (5) for the time fractional term in Equation (1) by using the 

fractional implicit upwind method as follows:  
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After rearranging the following equation can be found  
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3. Stability Analysis 

Let us consider the Von Neumann-based method in preparation for 

estimating the stability of the upwind implicit scheme for TFADE. Let n
i

U  be 

the approximate solution of fractional schemes (8). For stability, the time 

along with the Caputo time fractional, term the advective terms are 

discretized backward FDA (upwind) and the diffusive term with the central 

FDA.  

Lemma. The coefficients 
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We defined error as, NnUu n
i

n
i

n
i ,,1,0;   and .,,2,1 Mi   

By using the induction method terms are developed for finite difference 

implicit upwind numerical scheme in Equation (8). From (8), when 0n   
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when ,1n   
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define  ,xilq
m

m
i e   where q is a real spatial wave number and .1I  

Inserting this equation into (8) one gets and boundary values,  
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The above stability condition is unconditionally stable.  
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4. Numerical Results 

Example 1. It is important to enhance the accuracy of the upwind 

implicit scheme, as a result, numerical results obtained are compared with 

the exact solution. Consider a TFADE with an initial/boundary condition (1-3) 

with the following initial condition,  

20 xxu   (12) 

and the boundaries are,  

021  ubub  (13) 

The respective source term is given as,  
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The exact/analytical solution is      .1, 22  txxtxu   

 

Figure 1. Validating the (left) exact and (right) numerical solutions for 

example 1. 

The exact/numerical results are calculated for the time 5.0t  using the 

proposed upwind implicit scheme for 1v  and .1lD  The maximum space 

length of 1x  is considered and the results are compared with the exact 

results as depicted in figure 1.  

Example 2. Also, for the TFADE without the source term as, 
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    0,1;1,0 





t

U
tUtU  (17) 

Here the characteristics of the fractional-order term for various  are 

discussed with the left boundary of Dirichlet and right side with the 

Neumann boundary (Equation 17) and also with zero initial values (Equation 

16). 

 

Figure 2. Change of U for various  at .1.0t  

 

Figure 3. Change of U for various  at .1.0t  

The variation of the parameter U concerning the time and space under 

specific initial and boundary conditions, as shown in Figures 2 and 3. By 

increasing the fractional order (), the parameter U decreases and also U 

increased with increasing the advective term (V).  

3. Conclusions 

The TFADE is studied numerically using the upwind implicit method. 

The upwind implicit method is stable at all conditions and the scheme is a 

good comparison with the exact solution. The numerical finding shows that 



SWAPNALI DOLEY, A. VANAV KUMAR and L. JINO 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022 

1246 

the change of parameter U for the time-fractional order term. Mainly U 

increases with the decrease of fractional order (), also with the increase in V.  

References 

 [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, 

fractional differential equations, to methods of their solution and some of their 

applications, Elsevier, (1998). 

 [2] K. Devendra and S. Jagdev, Fractional Calculus in Medical and Health Science, CRC 

Press, (2020). 

 [3] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, (2000).  

 [4] T. M. Atanackovic, S. Pilipovic, B. Stankovic and D. Zorica, Fractional Calculus with 

Applications in Mechanics: Wave Propagation, Impact and Variational Principles, Wiley 

Blackwell, (2014). 

 [5] D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional 

advection-dispersion equation, Water Resour. Res. 36 (2000), 1403-1412. 

https://doi.org/10.1029/2000WR900031  

 [6] A. Allwright and A. Atangana, Augmented upwind numerical schemes for a fractional 

advection-dispersion equation in fractured groundwater systems, Discret. Contin. Dyn. 

Syst.-Ser. S. 13 (2020), 443-466, available online at https://doi.org/10.3934/dcdss.2020025  

 [7] Y. E. Aghdam, H. Mesgrani, M. Javidi and O. Nikan, A computational approach for the 

space-time fractional advection-diffusion equation arising in contaminant transport 

through porous media, Eng. Comput. (2020), available online at 

https://doi.org/10.1007/s00366-020-01021-y  

 [8] F. Liu, V. V. Anh, I. Turner and P. Zhuang, Time fractional advection-dispersion 

equation, J. Appl. Math. Comput. 13 (2003), 233-245, available online at 

https://doi.org/10.1007/BF02936089  

 [9] F. Huang and F. Liu, The time fractional diffusion equation and the advection-dispersion 

equation, ANZIAM J. 46 (2005), 317-330, available online at  

https://doi.org/10.1017/s1446181100008282  

 [10] C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. 

Bifurc. Chaos. 22 (2012), available online at https://doi.org/10.1142/S0218127412300145  

 [11] P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion 

equation, J. Appl. Math. Comput. 22 (2006), 87-99, available online at 

https://doi.org/10.1007/BF02832039  

 [12] D. A. Murio, Implicit finite difference approximation for time fractional diffusion 

equations, Comput. Math. with Appl. 56 (2008), 1138-1145, available online at 

https://doi.org/10.1016/j.camwa.2008.02.015.  

 [13] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the 

difference methods for the space-time fractional advection-diffusion equation, Appl. 



UPWIND SCHEME OF CAPUTO TIME FRACTIONAL … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022 

1247 

Math. Comput. 191 (2007), 12-20, available online at 

https://doi.org/10.1016/j.amc.2006.08.162  

 [14] W. McLean, K. Mustapha, R. Ali and O. Knio, Well-posedness of time-fractional 

advection-diffusion-reaction equations, Fract. Calc. Appl. Anal. 22 (2019), 918-944, 

available online at https://doi.org/10.1515/fca-2019-0050  

 [15] Y. Povstenko, Generalized boundary conditions for the time-fractional advection 

diffusion equation, Entropy. 17 (2015), 4028-4039, available online at 

https://doi.org/10.3390/e17064028  

 [16] S. T. Mohyud-Din, T. Akram, M. Abbas, A.I. Ismail and N.H.M. Ali, A fully implicit finite 

difference scheme based on extended cubic B-splines for time fractional advection-

diffusion equation, Adv. Differ. Equations (2018), available online at 

https://doi.org/10.1186/s13662-018-1537-7.  

 [17] N. Chen, J. Huang, Y. Wu and Q. Xiao, Operational matrix method for the variable order 

time fractional diffusion equation using Legendre polynomials approximation, IAENG 

Int. J. Appl. Math. 47 (2017), 282-286.  

 [18] A. Mardani, M. R. Hooshmandasl, M. H. Heydari and C. Cattani, A meshless method for 

solving the time fractional advection-diffusion equation with variable coefficients, 

Comput. Math. with Appl. 75 (2018), 122-133, available online at 

https://doi.org/10.1016/j.camwa.2017.08.038.  

 [19] Q. Tang, On an optimal control problem of time-fractional advection-diffusion equation, 

Discret. Contin. Dyn. Syst. - Ser. B. 25 (2020), 761-779, available online at 

https://doi.org/10.3934/dcdsb.2019266. 


