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Abstract 

In this paper, we use the Riemann problem for a quasilinear hyperbolic system of equations 

for unsteady flow of an ideal gas with dust particles in one-dimensional regime. We have applied 

the various arithmetic procedures on flux variables. Three waves structure with characteristic 

speed as eigenvalues of Jacobian matrix obtained from the system of equations is studied. Here, 

some cases discussed and using symbols obtained after using the arithmetic averaging to the 

vector of conservative variable and flux function and analyzed the behaviour of eigenvectors in 

dusty gas. 

Introduction 

For the conservation law, the Riemann problem is the initial value 

problem with discontinuous initial data. The solution of the Riemann problem 

with data LU  and RU  be composed of three waves in which the middle wave 

is always a contact discontinuity and rest of two waves are either shock wave 

or rarefaction waves. The solution of the Riemann problem has applications 

in the theoretical and numerical study of the system of conservation laws in 

reacting flows, magnetogasdynamics, shallow water theory, ideal gas-
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dynamics, non-ideal gas-dynamics. Godunov [4] presented numerical method 

of integrating system of quasilinear hyperbolic system of equations, 

applicable to the solution of a class of problems of gas dynamics, 

aerodynamics and continuum mechanics. Glaister [2] has studied of various 

of arithmetic averaging for approximate Riemann solver for two-dimensional 

Euler equations for compressible flow of an ideal gas. 

In computational fluid-dynamics (CFD) Upwind methods of Godunov type 

has a significant collision, Godunov type methods has complexity and 

computing cost, a required solution of Riemann problem is complex and 

expensive in computation. Approximate Riemann solver generally less 

expensive than exact Riemann solver. Toro [15] offered two approaches to 

find direct approximate solution to the Riemann solver, his presentation 

resulted in the time-dependent Euler equation but the idea was treated to 

systems similarly. Glimm [3] found the weak solution to the Riemann 

problem, these solutions was not differential or continuous in general and has 

jump discontinuities in the form of shock. 

Jena and Sharma [6] used a group theoretical method to establish the 

entire class of self similar solution to the problem of shock wave entering 

through the dusty gas. Singh et al. [14] discussed a problem of entering of 

strong plane and converging shock wave in a mixture of gas and small solid 

particles with the assumption that solid particles are continuously distributed 

in the gas, they derived the jump conditions for the plane and converging 

shock waves using the nonstandard analysis. Miura et al. [8] discussed the 

passage of shock waves through dusty gas layer, they obtained properties of 

gas and dusty gas by idealized equilibrium-gas approximation and got criteria 

for the wave reflexion at the contact surface separating the pure gas from the 

dusty gas. Pai et al. [12] investigated the similarity solution of a strong shock 

wave entering in a mixture of a gas and small solid particles, and described 

similarity solution exists when the shock is very strong and the surrounding 

medium is of constant density and at rest with negligible counter pressure, 

with the derivation of the non-dimensional fundamental equations. Nath et 

al. [10] studied the Riemann problem for a quasilinear hyperbolic system of 

equations of unsteady flow of an ideal polytropic gas with dust particles in 

one dimension, and analyzed properties of shock waves, rarefaction waves 

and contact discontinuity for dusty gas and existence and uniqueness of the 

solution of Riemann problem in a dusty gas. 
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Nath et al. [11] assessed that how dust particles in the gas effects the 

existence of shock or not and also discussed how to variation of mass fraction 

of the dust particles effects on the growth decay behaviour of shock in 

cylindrical symmetric and spherically symmetric flows.  Manjunatha et al. [7] 

discussed a two phase model employing on linearly streching cylinder 

engrossed in a porous media subjected to effect of radiation in dusty fluid. 

Nath and Sahu [9] studied a self similar model under a rotating atmosphere 

in a non ideal gas behind a cylindrical shock wave evicted by a piston 

travelling with time according to an exponential law in one-dimensional 

unsteady adiabatic flow. Doromin and Larkin [1] have analyzed an one-

dimensional initial value problem for two phase flow of a compressible, 

viscous dusty gas in a channel. Gupta et al. [5] have discussed about a direct 

approach to one-dimensional Riemann problem for unsteady planner flow of 

an isentropic, compressible, inviscid fluid for a quasilinear hyperbolic system 

of equations. Singh [3] has described a problem for an unsteady flow of a 

radiating gas near the optically thin limit with the assumption that the gas is 

optically grey, inviscid and in thermodynamic equilibrium using a wave front 

expansion in one dimension. 

In this paper we have studied Riemann problem in the conservation form 

of compressible fluid using arithmetic averaging procedure. We discussed 

some cases by making jacobian matrices with the help of arithmetic 

averaging on the flux function and the vector of conservative variables and 

discussed behaviour of eigenvectors in the dusty gas. 

Governing Equations 

We have governing equations expressing a planar flow of an ideal 

polytropic gas with dust particles and the conservation form of Euler system 

of partial differential equation of compressible fluid flow in a dusty gas in one 

dimension Nath et al. [9] is: 

,0 xt FU  (1) 

where the vector of conserved flow variables U, the flux function  UF  is 

associated with the planar flow is defined, respectively, as: 
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where the density , velocity u, and the pressure p are the function of spacial 

co-ordinate x and time Et,  is the internal energy per unit mass of the 

mixture expressed as 

 
 





 Z

pZ
E ,

1

1
 with ,sppk   (4) 

with gsp VVZ   is the volume fraction with gspp mmk   is the mass 

fraction of the solid particles and sp  is the  mixture where spm  is the total 

mass and spV  is the volumetric extension of the solid particles respectively, 

gV  is  the total volume and gm  the total mass of the mixture respectively, 

the Gruneisen coefficient     11  with  ,1 pp kk   

,, vppsp cccc   where spc  is the specific heat of the solid particles; 

pc  and vc  are the specific heat of the gas  at constant pressure and  the 

specific heat of the gas  at constant volume and the equation of state for a 

polytropic dusty gas respectively. 
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where vck,  and  are positive constant. 

The Jacobian Matrices and Structure 

If the vector of physical variables is denoted by   ,,,
T

puu 


 the two 

jacobian matrices P and Q which are the derivatives of vector of conserved 

variables and flux function  UF  respectively is constructed as: 
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1P  is calculated as 

 

,

1

1

1

1

1

1

12

0
1

001

2

1




















































































u
pu

u
P  (8) 

using (7) and (8), the usual jacobian matrix is  
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where  

 
C

p
C ,

1
2




  is the velocity (10) 

eigenvalues and eigenvectors of the matrix A are 

,,,1 32 uCuCu   (11) 

 .0,0,1,,1,,,1, 321 
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The characteristic field corresponding to first and second eigenvalues is 

genuinely non-linear and corresponding to third eigenvalue it is linearly 

degenerate, this give rise to a three waves structure among of them two 

waves are travelling with the speed Cu   and one moving with the speed u. 
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Determination of A 

 Here several arithmetic averaging procedures is applied in 

determination of A and we find out some identities, we allow a number of 

degree of freedom for the symbols used in place of physical variables and this 

process gives a significant meaning to the purpose of finding a simplest form 

of the matrix A and its eigenvalues.  First we will rewrite the component of 

U  in terms of   ,,,
T

puu 


 where 
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with L and R represent the left and right hand states of non-linear waves 

namely shock wave, rarefaction wave and contact discontinuity; and 

averaging operator  defined below. 
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where q is any component of   ,,,
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 the vector of physical variables. 

Third component of U  is defined by 
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second term of third component of U  is defined by  

  ,pp   (15) 

where  

,ˆ,,  pp  (16) 

,,ˆ,  pp  (17) 

,,,  pp  (18) 
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where  and  are referred to Glaister [6] and here are four choices for 

 ,p  namely (16)-(19) in which either choice can be made in U  and 
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in the expression denoted by equation (24) , the term 3u  give rise to two 
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There are four choices for , and  in (16)-(19), two alternatives for  and  

in (26) and (27), we have (24) total possible alternatives to form (24) possible 

jacobian flux matrix A and hence eigenvalues. As all (24) possible jacobian 

matrices cannot be discussed here so we have described three cases and 

studied behaviour of the eigenvalues and associated eigenvectors. 

 Case 1: 
22 ,, uuuu   rest choices for , and  are referred to 

Glaister [6], we get a simplest form of usual jacobian matrix (31) 
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2
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





  ur  (36) 

The wave moving with the speed u does not carry a jump in velocity as the 

second entry in the corresponding eigenvector is zero. 

Case 2: 
22 ,~, uuuu   
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whose eigenvalues and eigenvectors are 

,,~,~
321 ucucu gg   (38) 

where 
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



  ur  (41) 

The wave rising with the speed 3  does not show a jump in velocity when 

passes through a dusty gas. 

Case 3: 32 ,, uuu   
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whose eigenvalues and eigenvectors are  

,,, 321 ucucu hh   (43) 

where 

,
2

2




C
ch  

 22
1

1
1, , ,

4

f
f

c
r c u

 
    

 
 (44) 

,,,1 2
2 










 h

h c
c

r  (45) 

 .0,0,13 r  (46) 

Here are changes in all the physical variables of the wave moving with speed 

1   and ;2  the wave moving with the speed 3  has a jump in density. 
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Results and Discussion 

We have applied here averaging procedures on the vector of conservative 

variables and flux function in one-dimensional dusty gas. We have studied 

the behaviour of eigenvectors associated to characteristic speed of elementary 

waves. We have discussed three cases using symbols obtained after applying 

arithmetic averaging on the jacobian matrices and studied behaviour of 

eigenvectors of jacobian matrices. These eigenvectors associated to the 

characteristic speed of elementary waves showing the changes in the density, 

pressure and velocity of the elementary waves. it is noteworthy that after 

applying the averaging operator there is no change in the physical variables 

at the contact discontinuity and changes take place in the shock waves and 

rarefaction waves when passes through dusty gas. 
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