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Abstract 

The aim of this paper is to investigate the solution of space-time fractional traveling wave 

equation by Crank-Nicolson finite difference method using Python Programme. Also, we prove 

the scheme is unconditionally stable and convergent. Furthermore, we develop the Python 

programme for the proposed scheme and estimate the error. Finally, we obtain the numerical 

solutions of some test problems and simulated graphically by a Python programme. 
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1. Introduction 

In recent years, fractional differential equations are becoming a 

significant implement in the analysis and modeling of scientific problems in a 

broad array of fields such as physics, engineering, biology, finance, economics 

and earthquakes study etc. [2, 6, 9, 11, 10, 17]. There has been increasing 

attention in the description of physical and chemical processes using 

equations involving fractional derivatives and integrals. The study of 

fractional differential equations has been a highly focused in recent years. 

But most of the fractional differential equations do not have exact solutions. 

Traveling wave analysis is the most significant approach to study linear and 

non-linear partial differential equations. This study leads to various types of 

solutions such as soliton solutions, periodic solutions, kink solutions, cuspons 

solutions, compacton solutions, peakon solutions etc. [18]. The traveling wave 

solutions of fractional order partial differential equations are useful to 

analyses the mechanisms of phenomena as well as further application in 

various fields. Though, finding traveling wave solutions is not a 

straightforward task at all, therefore researchers are preferring finite 

difference schemes. 

The finite difference approximations for derivatives are one of the 

simplest and the efficient method to solve fractional order partial differential 

equations [1, 3, 14, 13, 16]. Therefore, in this connection we develop the 

Crank-Nicolson finite difference scheme for space time fractional traveling 

wave equation and obtain its solution using Python programme. Recently, 

many researchers have shifted from compiled languages to interpreted 

problem solving environments, such as MATLAB, Maple, Octave, R etc. [5, 

12, 15]. The Python is now rising as a potentially competitive replacement to 

MATLAB, Octave, and other similar environments [4, 7]. The popularity of 

Python is because of simple and clean syntax of the commands, incorporation 

of simulation and visualization, interactive execution of commands with 

instantaneous feedback and lots of built-in functions available and work 

efficiently on arrays in compiled code. Now a days, researchers are using 

Python due to its simplicity, wealth of available support and the NumPy 

package, which provides contiguous multi-dimensional array structures with 

a large library of array operations. 
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The plan of the paper is as follows: In section 2, the Crank-Nicolson finite 

difference scheme is developed for space-time fractional traveling wave 

equation. The section 3 is devoted for stability of the scheme and the question 

of convergence is proved in section 4. The last section is devoted for Python 

programme and numerical solution of the space-time fractional traveling 

wave equations. 

We consider the following space-time fractional traveling wave equation 
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subject to the initial conditions: 

( ) ( ) ( ) ( )  LxxgxV
t

xfxV ,0,0,,0, =

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(1.2) 

and boundary conditions: 

( ) ( ) 0,0,,0,0 == ttLVtV
 

 (1.3) 

where ( )txV ,  is the displacement of wave at position x and time t, and C is 

the velocity of wave. The Caputo time fractional derivative of order  is 

defined as follows [8], 
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where m is a integer such that .1 mm −  The right shifted Grunwald-

Letnikov space fractional derivative of order  is defined as follows [8], 
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2. Finite Difference Scheme 

In this section, we discretized the space-time fractional traveling wave 

equation (1.1)-(1.3) using Crank-Nicolson finite difference scheme. Let 

Miihxi ,,2,1,0, ==  and ,,,2,1,0, Nnnktn ==  where 
M

L
h =  
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and .
M

T
k =  Let n

iV  be the numerical approximation of ( )txV ,  at point 

( ),, nkih  where h and k are spatial and temporal sizes respectively. We 

discretized the Caputo time fractional derivative as follows: 
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As ( )kn 1+  is finite, then above formula can be rewritten as 
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where 

( ) njjjbj ,,2,1,0,1 22 =−+= −−
 

We use the right shifted Grunwald formula to discretized the space 

fractional derivative as follows [8]: 
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where 
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which called the normalized Grunwald weights. They can be found by the 

recursive formula: 
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Now, putting (2.1) and (2.2) in equation (1.1), we obtain the Crank-

Nicloson type numerical approximation of space-time fractional traveling 

wave equation (1.1) as follows: 
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We simplify the above equation and obtain 
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The initial conditions are approximated as follows: 

( ) ( )ii xfxV =0,  implies ( ) 1,,2,1,0 −== MixfV ii 
 

(2.4) 

and 
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(2.5) 

Also, the boundary conditions are approximated as follows: 

( ) 0,0 =ntV  implies 1,,2,1,00 −== NnV n   

and 

( ) 0, =ntLV  implies 1,,2,1,0 −== NnV n
M   
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We put 0=n  in equation (2.3) and using equation (2.5), we obtain 

( ) 
+

=

+

=

+−+− ++=−

1

0

1

0

0
1

01
1

1

22

i

l

i

l

liliilili Vw
r

xkgVVw
r

V  

and for ,1,,2,1 −= Nn   we get 

( ) 
+

=

−

=

−−−+−−+
+−

+ +−−−=−

1

0

1

1

1111
1

1 22

i

l

n

j

jn
i

jn
i

jn
ij

n
i

n
i

n
lil

n
i VVVbVVVwrV  

( ( )) 
+

=

+−++−−

1

0

1
012

i

l

n
liliiin VwrxkgVVb  

The complete discretized space-time fractional traveling wave equation 

with initial and boundary conditions is written as follows: 
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initial condition: 

( ) 1,,2,1,0 −== MixfV ii 
 

 (2.8) 

boundary conditions: 

1,,2,1,0,0 −=== NnVV n
M

n
i 

 
(2.9) 

The discretized finite difference scheme (2.6)-(2.9) can be written in 

matrix form as follows: 

for ,0=n  
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3. Stability 
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Theorem 3.1. The solution of Crank-Nicolson finite difference scheme 

given by (2.6)-(2.9) developed for equation (1.1)-(1.3) is unconditionally stable. 

Proof. We denote the error vector by ( )Tn
M

nnnE 121 ,,, −=   for 

.0 Nn   Also, we assume that 

,max
11


−

== nn
i

Mi

n E  for .,,2,1,0 Nn =  

Using mathematical induction, we will prove that ,0
1 

 EKEn  

for ,,,2,1,0 Nn =  where 1K  is a positive number independent of h and k. 

Now, using Lemma (2.2) and equation (3.1), we obtain 


+

=

+−−

1

0

1
1

11

2

i

l

lilii w
r

 



K. GHODE, K. TAKALE, S. GAIKWAD and K. BONDAR 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022 

512 


+

=

+−−

1

0

1
1

1

2

i

l

lili w
r

 


+

=

+−−

1

0

0
1

0

2

i

l

lili w
r

 

0
1

0
1

0

1

0

1
1

0

2
1

2















++ 

+

=

+

=

+− Kw
r

w
r

i

l

l

i

l

lili  


 0

1
1 EKE  

Suppose that 

,0
1 

 EKEq  

for nq   and 1K  is independent of h and k. 

Using Lemma (2.2), we have .02,02,02 111 −−− −− nnjj bbbbb  

Consider, 


+

=

+
+−

++ −

1

0

1
1

11
i

l

n
lil

n
i

n
i wr  


+

=

+
+−

+ −

1

0

1
1

1
i

l

n
lil

n
i wr  

( ) ( ) 
−

=

+

=

+−
−−−+−− +−−+−−−

1

0

1

0

1
01111 222

n

l

i

l

n
liliin

jn
i

jn
i

jn
ij

n
i

n
i wrbb  

( ) ( ) ( )
−

=

−
−

+− −+−−−+−

1

0

0
1

1
111 222

n

l

innin
jn

ijjj
n
i bbbbbbb  


+

=

+−
+

1

0

1

i

l

n
lilwr  



PYTHON: POWERFUL TOOL FOR SOLVING SPACE-TIME … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022 

513 

( ) ( ) ( )
−

=

−
−

+− −++−++−

1

1

0
1

1
111 222

n

j

innin
jn

ijjj
n
i bbbbbbb  


+

=

+−
+

1

0

1

i

l

n
lilwr  

( ) 0
1

1

1

0

1111 222 













+−++−++−  

−

=

+

=

−+−

n

j

i

l

lnnnjjj wrbbbbbbb  

( ) ( ) 0
1

0
1

0

11 2212 













+−+− 

+

=

− Kwrbbb

i

l

lnn  

Therefore, ,0
1

1


+  EKEn  where 1K  is a positive constant 

independent of h and k. Hence, by mathematical induction, for all 

,,,2,1 Nn =  we have 


 0

1 EKEn  

This completes the proof. □ 

4. Convergence 

In this section, we discuss the question of convergence. Let n
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exact solution of space-time fractional traveling wave equation (1.1)-(1.3) and 
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have 
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Theorem 4.1. Let n
iV  be the exact solution of (1.1)-(1.3) and n

iV  be the 

numerical solution of finite difference scheme (2.6)-(2.9) at each mesh point 

( )., ni tx  Then there exist a positive constant 2K  independent of h and k such 

that 
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i

n
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Proof. Let n
ie  be the error at each mesh point ( ),, ni tx  then  

n
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n
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Now, we denote the error vector by ( )Tn
M

nnn eeee 121 ,,, −=   for 

Nn 1  and local truncation error vector by ( )Tn
M

nnn
121 ,,, −=   for 

time level n. From equations (4.1)-(4.2), we get 
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for ,1n  
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Using mathematical induction, we will prove that ( ).2 khKen +
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Therefore, ( ),2
1 khKe +


 where 2K  is independent of h and k. 

Suppose that  
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
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Hence, by mathematical induction, for all ,,,2,1 Nn =  we have 

( )khKen +
 2  

This completes the proof. □ 

5. Python Programme 

In this section, we develop the Python programme-CN for Crank-Nicolson 

finite difference scheme (2.6)-(2.9) to solve space-time fractional traveling 

wave equation (1.1)-(1.3) numerically. We compute n
iV  at each grid point 

( )ni tx ,  using the scheme (2.6)-(2.9). The algorithm is given below: 

1. Compute ( ) .,,2,1,0,0 MixfV ii ==  

2. Compute .,,2,1,0,1 MiVi =  

3. Compute ,1+n
iV  for each .,,2,1,0,1,,2,1 MiNn  =−=  

Now, we develop the Python programme-CN for complete discretized 

scheme (2.6)-(2.9) as follows: 

Inputs: 

f - initial displacement 

g - initial velocity 

C - velocity of wave 

L - spatial length 

T - end time 
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h - space step size 

k - temporal step size 

a - fractional order  of time derivative 

b - fractional order  of space derivative 

t1 - time level, at which solution has to be estimate 

Output of Python programme CN is the approximate value of vector 

( ).1, txV i  

import math 

import numpy as np 

import scipy.linalg 

def CN(f,g,C,T,L,a,b,h,k,t1): 

r=(C**2*math.gamma(3-a)*k**a)/(2*h**b) 

N=int(round(T/k)) 

M=int(round(L/h)) 

t=np.linspace(0,N*k,N+1) 

x=np.linspace(0,M*h,M+1) 

V=np.zeros((N+1,M+1)) 

for i in range(0,M+1): 

V[0][i]=f(x[i]) 

A1 = np.zeros((M-1, M-1)) 

A2 = np.zeros((M-1, M-1)) 

b1 = np.zeros(M-1) 

b2 = np.zeros(M-1) 

w = np.zeros(M+1) 

w[0]=1 

for l in range(1,M+1): 



K. GHODE, K. TAKALE, S. GAIKWAD and K. BONDAR 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022 

518 

w[l]=w[l-1]*(1-((1+b)/l)) 

for i in range(0,M-1): 

A1[i][i]=1-(r/2)*w[1] 

for i in range(0,M-2): 

A1[i][i+1]=-(r/2)*w[0] 

for i in range(1,M-1): 

for j in range(0,i): 

A1[i][j]=-(r/2)*w[i-j+1] 

for i in range(1,M): 

s=0 

for l in range(0,i+2): 

s=s+w[l]*V[0][i-l+1] 

b1[i-1]=V[0][i]+k*g(x[i])+(r/2)*s 

V[1][1:M]=scipy.linalg.solve(A1, b1) 

V[1][0]=0;V[1][M]=0 

for i in range(0,M-1): 

A2[i][i]=1-r*w[1] 

for i in range(0,M-2): 

A2[i][i+1]=-r*w[0] 

for i in range(1,M-1): 

for j in range(0,i): 

A2[i][j]=-r*w[i-j+1] 

for n in range(1,N): 

for i in range(1,M): 

s1,s2=0,0 

for j in range(1,n): 
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s1=s1+((j+1)**(2-a)-j**(2-a))*(V[n-j+1][i]-2*V[n-j][i]+V[n-j-1][i]) 

s1=s1+2*((n+1)**(2-a)-(n)**(2-a))*(V[1][i]-V[0][i]-k*g(x[i])) 

for l in range(0,i+2): 

s2=s2+w[l]*V[n][i-l+1] 

b2[i-1]=2*V[n][i]-V[n-1][i]-s1+r*s2 

V[n+1][1:M]=scipy.linalg.solve(A2, b2) 

V[n+1][0]=0;V[n+1][M]=0 

t1=int(t1/k) 

return(x,V[t1]) 

Numerical experiment 1. We consider the following space-time 

fractional traveling wave equation: 

( )    1,01,0,,2 =



=












tx
x

V
C

t

V

 

 (5.1) 

with initial conditions: 

( ) ( ) ( )  1,0,00,,2sin0, =



= xxV

t
xxV   (5.2) 

and boundary conditions, 

( ) ( ) ( 1,0,0,1,0,0 == ttVtV
 

 (5.3) 

The exact solution to this problem for 2,2 ==  and 1=C  as follows: 

( ) ( ) ( )txtxV = 2cos2sin,  
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Figure 1. Periodic solution of traveling wave equation. 

Using the python programme-CN, we estimate the value of ( )txV ,  for 

any time level .nt  Let ( )kh,  be the maximum error between exact and 

numerical solutions with temporal and spatial grid sizes k and h respectively. 

The temporal and spatial order of convergence are computed using  

temporal order 
( )
( )

,
,

2,
log2 











=

kh

kh
 spatial order 

( )
( )

.
,

,2
log2 











=

kh

kh
 

In Table 1, we obtain the maximum error and order of convergence in 

temporal direction at time 1=t  with .2 10−=h  

Table 1. Maximum errors and temporal orders of convergence at 

.2,1 10−== ht  

k Maximum error Order 

52−  0.264489 – 

62−  0.142758 0.89 

72−  0.074186 0.94 

82−  0.037816 0.97 

92−  0.019091 0.98 

102−  0.009592 0.99 
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In Table 2, we obtain the maximum error and order of convergence in 

spatial direction at 

Table 2. Maximum errors and spatial orders of convergence at 

.2,9999.0 10−== kx   

h Maximum error Order 

22−  0.999371 – 

32−  0.706478 0.50 

42−  0.382055 0.88 

52−  0.194462 0.97 

62−  0.097388 0.99 

72−  0.048439 1.00 

9999.0=x  with .2 10−=k  

From Table 1 and 2, we observe that the proposed finite difference 

scheme is first-order accurate in temporal as well as spatial direction. The 

order of convergence obtained in the numerical results agreed to the 

theoretical analysis. In Figure 2, we compare the exact and numerical 

solutions obtained by the Crank-Nicolson scheme and observe that the 

numerical solution is enormously agreed with the exact solution. 

 

Figure 2. Comparison between exact and the numerical solutions with the 

parameters .1,1,2,2 96 ==== −− Ctkh  
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Figure 3. Comparison of the numerical solutions with the parameters 

.1,1,2,2 96 ==== −− Ctkh  

From Figure 3, we observed that the obtained solutions are stable and 

sufficiently approximate to the exact solutions and therefore, we conclude 

that the proposed scheme gives accurate results and stable solutions. Hence, 

Python is a powerful tool to obtain the numerical solutions of space-time 

fractional traveling wave equation. 

Numerical experiment 2. We consider the following space-time 

fractional traveling wave equation: 

( )    1,01,0,,2 =



=












tx
t

V
C

t

V
 

subject to initial conditions: 

( ) ( ) ( ) ( 1,0,2sin20,,00, =



= xxCxV

t
xV  

and boundary conditions, 

( ) ( ) ( 1,0,0,1,0,0 == ttVtV  

The exact solution to this problem for 2,2 ==  is ( )txV ,  

( ) ( ).2sin2sin tCx =  In Table 3 and 4, we obtain the order of convergence in 

temporal and spatial directions respectively. 
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Table 3. Maximum errors and temporal orders of convergence at 

.2,75.0 8−== ht
 

k Maximum error Order 

62−  0.106548 – 

72−  0.055491 0.94 

82−  0.028306 0.97 

92−  0.014285 0.98 

102−  0.007166 0.99 

112−  0.003580 1.00 

Table 4. Maximum errors and spatial orders of convergence at 

.2,9999.0 10−== kx  

h Maximum error Order 

22−  1.107705 – 

32−  0.723289 0.61 

42−  0.383607 0.91 

52−  0.194308 0.98 

62−  0.097193 0.99 

72−  0.048326 1.00 

From these tables, it can be seen that the proposed finite difference 

scheme is first-order accurate in temporal as well as spatial direction. 

In Figure 4, we obtain the numerical solutions using proposed finite 

difference scheme for different values of t for .8.1,9.1 ==  
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Figure 4. Behavior of the numerical solutions with the parameters 

.1,2,2,8.1,9.1 96 ===== −− Ckh  

From Figure 4, we observe that solutions obtained by proposed scheme 

are stable and converges appropriately to the solution obtained at .1=t  In 

Figure 5, we obtain the numerical solutions for different values of  and  at 

.7.0=t  

 

Figure 5. Behavior of the numerical solutions with the parameters

.7.0,1,2,2 96 ==== −− tCkh  

We observe that solutions obtained by proposed scheme are converges to the 

solution obtained for .2,2 ==  

6. Conclusions 

(i) We develop the Crank-Nicolson finite difference scheme for space-time 

fractional traveling wave equation. 

(ii) Furthermore, we proved that the developed scheme is unconditionally 

stable and convergent. 
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(iii) We successfully develop a python programme for space-time 

fractional traveling wave equation and obtain the numerical solutions of the 

test problems and estimate the error. 

(iv) Also, we found that the finite difference scheme is numerically stable 

and the results are compatible with our theoretical analysis. 

(v) Finally, we conclude that Python is a powerful tool for obtaining the 

numerical solutions of space-time fractional traveling wave equation because 

the numerical results are very close to the exact solutions. 
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