

# STUDY OF PARAMETRIC CONVERGENCE AND PROJECTIVE CONVERGENCE IN A FUNCTION SPACE

## KARUNA KUMARI SHARMA

Department of Mathematics Jai Prakash University Chapra-841302 (Bihar), India E-mail: karunaksharma24@gmail.com

#### Abstract

In this article we introduce the notions of parametric convergence, projective convergence, coordinate convergence and projective continuity in function spaces. We have introduced the notion of parametric limit. A necessary and sufficient condition has been given for  $f_{\lambda}(x)$  a family of functions of x defined for all  $\lambda$  in  $[0, \infty)$  (where  $\lambda$  is parameter) to be  $\alpha(f) \beta(f)$ -convergence as well as for  $\alpha(f) \beta(f)$ -continuous.

## 1. Definition of Co-ordinate Convergence

Let  $f_{\lambda}(x)$  be a family of functions of x defined for all  $\lambda$  in  $[0, \infty)$ , where  $\lambda$  is a parameter.

If for almost all  $x \ge 0$ ,  $f_{\lambda}(x)$  tends to finite limit as  $\lambda \to \infty$ , i.e. if to every  $\varepsilon > 0$  and to almost all  $x \ge 0$ , there corresponds a positive number  $N(\varepsilon, x)$  such that  $|f_{\lambda}(x) - f_{\lambda'}(x)| \le \varepsilon$  for all  $\lambda, \lambda' \ge N(\varepsilon, x)$  and for almost all  $x \ge 0$ , then the family  $f_{\lambda}(x)$  is said to be **co-ordinate convergent** and we denote it in short as c - cgt. [cf. Infinite matrices and sequence spaces, p-283].

## 2. Definition of Parametric Convergence

If for almost all  $x \ge 0$ ,  $f_{\lambda}(x)$  converges uniformly to a finite limit as  $\lambda \to \infty$  i.e., if to every  $\varepsilon > 0$ , there corresponds a positive number  $N(\varepsilon)$ ,

2020 Mathematics Subject Classification:  $54\mathrm{C}35.$ 

Received September 21, 2021; Accepted October 22, 2021

Keywords: Co-ordinate convergence, Parametric convergence, Parametric limit, Projective continuity, Projective convergence.

independent of *x*, such that, for almost all  $x \ge 0$ ,

$$|f_{\lambda}(x) - f_{\lambda'}(x)| \le \varepsilon \tag{2.1}$$

for all  $\lambda, \lambda' \geq N(\varepsilon)$ , then the family  $\psi(x)$  is said to be **parametric convergent**. And in short, we denote it by  $(\lambda - cgt)$ . If for almost all  $x \geq 0$ ,  $f_{\lambda}(x)$  converges uniformly to  $\psi(x)$  as  $\lambda \to \infty$  i.e., if given any  $\varepsilon > 0$ , there exists a positive number  $N(\varepsilon)$ , independent of x, such that for almost all  $x \geq 0$ 

$$|f_{\lambda}(x) - \psi(x)| \le \varepsilon \tag{2.2}$$

for all  $\lambda \ge N(\varepsilon)$ , then  $\psi(x)$  is called the **parametric limit** ( $\lambda$ -limit) of  $f_{\lambda}(x)$ , and we write  $\lambda - \lim f_{\lambda}(x) = \psi(x)$ .

Let 
$$\psi_1(x) = \psi(x)$$
 for almost all  $x \ge 0$ 

Then

$$| f_{\lambda}(x) - \psi_{1}(x) | = | f_{\lambda}(x) - \psi(x) + \psi(x) - \psi_{1}(x) |$$
  

$$\leq | f_{\lambda}(x) - \psi(x) | + | \psi(x) - \psi_{1}(x) |$$
(2.3)

Thus, to every  $\varepsilon > 0$  there corresponds a positive number  $N(\varepsilon)$ , independent of x, such that by (2.2) and (2.3), for almost all  $x \ge 0$ 

$$|f_{\lambda}(x) - \psi_1(x)| < \epsilon$$

for all  $\lambda \ge N(\varepsilon)$ . Hence  $\psi_1(x)$  is also a  $\lambda$ -limit of  $f_{\lambda}(x)$ . Thus, we observe that any function equal to  $\psi(x)$  for almost all  $x \ge 0$  is also a  $\lambda$ -limit of  $f_{\lambda}(x)$ .

Hence, we say that  $\psi(x)$  is the parametric limit ( $\lambda$ -limit) of  $f_{\lambda}(x)$ , we mean that  $\psi(x)$  is a  $\lambda$ -limit of  $f_{\lambda}(x)$  and all functions equivalent to  $\psi(x)$  in  $[0, \infty)$  are  $\lambda$ -limits of  $f_{\lambda}(x)$ .

[A function  $\varphi(x)$  is said to be equivalent to  $\psi(x)$  in  $[0, \infty)$  when  $\varphi(x) = \psi(x)$  almost everywhere in  $[0, \infty)$ ].

#### 3. Definition of Projective Convergence

In defining projective convergence in the case of sequence spaces, the condition  $\beta \ge \varphi$  has been taken to ensure that projective convergence implies co-ordinate convergence; [see Allen [1], p.312]. But it will presently be seen that in the case of function spaces, even if we take  $\beta(f) \ge \varphi(f)$ , projective convergence does not necessarily imply co-ordinate convergence. Hence, when defining projective convergence in the case of function spaces, we do not prescribe the condition  $\beta(f) \ge \varphi(f)$ .

Let 
$$\alpha^*(f) \ge \beta(f)$$
 and  $F_g(\lambda) = \int_0^\infty f_\lambda(x) g(x) dx$  (3.1)

where  $f_{\lambda}(x) \in \alpha(f)$  and  $g(x) \in \beta(f)$ ,

then (i) if  $F_g(\lambda)$  tends to a finite limit as  $\lambda \to \infty$  for every g(x) in  $\beta(f)$ , we say that  $f_{\lambda}(x)$  is **Projective convergent**. In short, we denote it by (*p*-cgt) relative to  $\beta(f)$  or  $\alpha(f) \beta(f)$ -cgt, and we say that  $f_{\lambda}(x)$  is *p*-cgt in  $\alpha(f)$ , or  $\alpha(f)$ -cgt when  $\beta(f) = a^*(f)$ , [cf. Infinite matrices and sequence spaces, p-283].

(ii) If  $F_g(\lambda)$  is uniformly continuous in  $\lambda$  in  $[0, \infty)$  for every g(x) in  $\beta(f)$ , then  $f_{\lambda}(x)$  is said to be **projective continuous** (*p*-continuous) relative to  $\beta(f)$ , or  $\alpha(f) \beta(f)$ -continuous, and it is said to be *p*-continuous in  $\alpha(f)$ , or  $\alpha(f)$ -continuous when  $\beta(f) = a^*(f)$ .

Thus form the definitions themselves we have the following two results.

## 4. Some Theorems on Projective Convergence

**Theorem 4.1.** A necessary and sufficient condition for the  $\alpha(f) \beta(f)$ convergence of  $f_{\lambda}(x)$  is that to every g(x) in  $\beta(f)$ , and to every  $\varepsilon > 0$ , there corresponds a positive number  $N(\varepsilon, g)$  such that, for all  $\lambda, \lambda' \ge N(\varepsilon, g)$ ,

$$\left| \int_{0}^{\infty} g(x) \{ f_{\lambda}(x) - f_{\lambda'}(x) \} dx \right| \leq \varepsilon$$
(4.1)

[cf. Infinite matrices and sequence spaces, p-283].

**Theorem 4.2.** A necessary and sufficient condition that  $f_{\lambda}(x)$  should be  $\alpha(f) \beta(f)$ -continuous is that to every g(x) in  $\beta(f)$ , and to every  $\varepsilon > 0$  there corresponds a positive number  $\delta(\varepsilon, g)$  such that (4.1) holds for all non-negative  $\lambda$  and  $\lambda'$  satisfying  $|\lambda - \lambda'| \leq \delta(\varepsilon, g)$ .

**Proof.** We know that in the case of sequence spaces (see I.M., 283),  $\alpha\beta$  - convergence always implies co-ordinate convergence (c-convergence), but in the case of function spaces, as we shall see below  $\alpha(f) \beta(f)$ -convergence does not necessarily imply c-convergence and hence also does not imply parametric convergence.

For example, Let  $f_{\lambda}(x) = \cos \lambda x$ , so that  $f_{\lambda}(x) \in \sigma_{\infty}(f)$ .

Let g(x) be any function in  $\sigma_1(f)$ , then by the Riemann-Lebesgue Theorem, we have

$$\lim_{\lambda \to \infty} \int_{0}^{\infty} g(x) \cos \lambda x \, dx = 0$$

i.e.,

$$\lim_{\lambda\to\infty}\int\limits_0^\infty f_\lambda(x)\ g(x)\ dx=0$$

And therefore, by the definition of projective convergence  $f_{\lambda}(x)$  is  $\sigma_{\infty}(f)$ -cgt. But  $\cos \lambda x$  does not tend to a limit as  $\lambda \to \infty$ . Hence  $f_{\lambda}(x) \equiv \cos \lambda x$  is not *c*cgt, and so is not  $\lambda$ -cgt. Thus  $\sigma_{\infty}(f)$ -convergence does not imply *c*-convergence and so in general  $\alpha(f) \beta(f)$ -convergence does not necessarily imply coordinate convergence. It is remarked that  $\sigma_1(f) > \varphi(f)$ ; thus, even the fulfilment of the condition  $\beta(f) \ge \varphi(x)$  does not ensure that  $\alpha(f) \beta(f)$ convergence.

However, Theorem 4.3 established below gives sufficient conditions under which projective convergence implies parametric convergence.

We shall say that  $f_{\lambda}(x) \in m(f)_{\lambda}$  when for almost all  $x \ge 0$ ,  $f_{\lambda}(x)$  is always

either monotonic increasing or monotonic decreasing with respect to  $\lambda$  in  $[0, \infty)$ .

**Theorem 4.3.** If  $\beta(f) \ge \varphi(x)$  and  $f_{\lambda}(x) \in m(f)_{\lambda}$  and  $f_{\lambda}(x)$  is  $\alpha(f) \beta(f) - cgt$ , then  $f_{\lambda}(x)$  is  $\lambda$ -cgt.

**Proof.** Suppose that  $f_{\lambda}(x) \in m(f)_{\lambda}$ ,  $\beta(f) \ge \varphi(f)$  and that  $f_{\lambda}(x)$  is  $\alpha(f) \beta(f)$ -cgt.

Since  $f_{\lambda}(x)$  is  $\alpha(f) \beta(f)$ -cgt to every g(x) in  $\beta(f)$  and to every  $\varepsilon > 0$ , there corresponds by (2.1), a positive number  $N(\varepsilon, g)$  such that for all  $\lambda, \lambda' \ge N(\varepsilon, g)$ ,

$$\left|\int_{0}^{\infty} g(x) \{f_{\lambda}(x) - f_{\lambda'}(x)\} dx\right| \leq \varepsilon$$
(4.2)

If possible, suppose that there exist  $\varepsilon > 0$  and an unbounded set  $F \subset [0, \infty)$  such that, for all  $\lambda, \lambda'$  in F,

$$|f_{\lambda}(x) - f_{\lambda'}(x)| > \varepsilon \tag{4.3}$$

for all x in E, where E is a subset of  $[0, \infty)$  and is of finite positive measure, say m(E).

Take 
$$g(x) = \begin{cases} \frac{1}{m(E)}, & \text{for } x \text{ in } E\\ 0, & \text{elsewhere,} \end{cases}$$

Then  $g(x) \in \varphi(f)$ , and consequently  $g(x) \in \beta(f)$ , by the hypothesis Then for this g and that  $\varepsilon$  for which (4.3) is true, there exist N, such that by (4.2), for all  $\lambda, \lambda' \ge N$ ,

$$\int_{E} \frac{1}{m(E)} \left\{ f_{\lambda}(x) - f_{\lambda'}(x) \right\} dx \leq \varepsilon,$$

i.e.,

$$\frac{1}{m(E)} \int_{E} |f_{\lambda}(x) - f_{\lambda'}(x)| dx \le \varepsilon$$
(4.4)

Since  $f_{\lambda}(x) \in m(f)_{\lambda}$ , by hypothesis (4.4) is obviously true for all  $\lambda, \lambda'$  in  $F \subset [N, \infty)$ .

But for all  $\lambda$ ,  $\lambda'$  in  $F \cap [N, \infty)$ , by (4.3),

$$\frac{1}{m(E)} \int_{E} |f_{\lambda}(x) - f_{\lambda'}(x)| \, dx > \frac{1}{m(E)} \cdot \varepsilon \cdot m(E) = \varepsilon \tag{4.5}$$

Thus (4.5) contradicts (4.4), hence (4.3) is impossible and therefore

$$|f_{\lambda}(x) - f_{\lambda'}(x)| \leq \varepsilon$$

for almost all  $x \ge 0$  and all  $\lambda, \lambda' \ge N(\varepsilon)$  for every  $\varepsilon > 0$  and so  $f_{\lambda}(x)$  is  $\lambda$ -cgt.

### Acknowledgement

Author wish to thank Dr. Lal Babu Singh, Professor, PG Department of Mathematics, Jai Prakash University, Chapra, Bihar, India, for his valuable suggestions to improve this paper a successful one.

#### References

- H. S. Allen, Projective convergence and limit in sequence spaces, P. L. M. S. 2-48(1) (1945), 310-338.
- [2] H. S. Allen, Transformation of sequence spaces, Journal London Math Soc. 31(3) (1956), 374-376.
- [3] R. G. Cooke, Infinite Matrices and Sequence Spaces, MacMillan, London, (1950).
- [4] R. G. Cooke, Linear Operators, Macmillan, London, (1953).
- [5] R. E. Edward, Functional Analysis, Holt, Rinehart and Winston, Inc., New York, (1965).
- [6] C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice Hall, India, New Delhi, (1974).
- [7] P. K. Kamthan and M. Gupta, Sequence Space and Series, Marcel Dekker, New York, (1981).