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Abstract

In this article we introduce the notions of parametric convergence, projective convergence,
coordinate convergence and projective continuity in function spaces. We have introduced the
notion of parametric limit. A necessary and sufficient condition has been given for f (x) a

family of functions of x defined for all A in [0, ) (where A is parameter) to be o(f) B(f)-

convergence as well as for o(f) B(f) -continuous.

1. Definition of Co-ordinate Convergence

Let f;.(x) be a family of functions of x defined for all A in [0, ), where A
is a parameter.

If for almost all x > 0, f,(x) tends to finite limit as A — oo, i.e. if to every
¢ >0 and to almost all x > 0, there corresponds a positive number N(g, x)
such that | f,(x)— fir(x) | <& for all A, A’ > N(g, x) and for almost all x >0,
then the family f, (x) is said to be co-ordinate convergent and we denote it

in short as ¢ — ¢gt. [cf. Infinite matrices and sequence spaces, p-283].

2. Definition of Parametric Convergence

If for almost all x >0, fi(x) converges uniformly to a finite limit as

A — o ie., if to every & >0, there corresponds a positive number N(g),
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independent of x, such that, for almost all x > 0,
| Ax) = fulx)] < e (2.1)

for all A, A" > N(g), then the family w(x) is said to be parametric
convergent. And in short, we denote it by (A —cgt). If for almost all
x >0, f,(x) converges uniformly to y(x) as A —  i.e., if given any ¢ > 0,
there exists a positive number N(g), independent of x, such that for almost

all x >0
| fulx) —plx)| < e (2.2)

for all A > N(e), then y(x) is called the parametric limit (A-limit) of £ (x),
and we write A —lim £, (x) = y(x).

Let 9;(x) = y(x) for almost all x > 0
Then
| fu(x) = () | = | fulxe) = plx) + lx) — 91 (%) |
<| fulx) = (@) | +] p(x) = p1(x) | (2.3)

Thus, to every & > 0 there corresponds a positive number N(g), independent

of x, such that by (2.2) and (2.3), for almost all x > 0
| ) —pulx) [ < e

for all A > N(g). Hence 9;(x) is also a A-limit of f; (x). Thus, we observe that

any function equal to y(x) for almost all x > 0 is also a A-limit of f; (x).

Hence, we say that (x) is the parametric limit (A-limit) of £ (x), we
mean that y(x) is a A-limit of £, (x) and all functions equivalent to ¥(x) in

[0, ) are A-limits of f, (x).

[A function ¢(x) is said to be equivalent to w(x) in [0, ) when
o(x) = yY(x) almost everywhere in [0, )].
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3. Definition of Projective Convergence

In defining projective convergence in the case of sequence spaces, the

condition B > ¢ has been taken to ensure that projective convergence implies

co-ordinate convergence; [see Allen [1], p.312]. But it will presently be seen

that in the case of function spaces, even if we take B(f) > ¢(f), projective

convergence does not necessarily imply co-ordinate convergence. Hence, when
defining projective convergence in the case of function spaces, we do not
prescribe the condition B(f) = ¢(f).

Let *(f) = (f) and Fy(%) = [ f,(x) g(x) dx (3.1)
0

where f,(x) € a(f) and g(x) € B(f),

then (i) if F,(1) tends to a finite limit as A — o for every g(x) in B(f), we
say that f,(x) is Projective convergent. In short, we denote it by (p-cgt)
relative to B(f) or o(f) B(f)-cgt, and we say that f,(x) is p-cgt in a(f), or

a(f)-cgt when B(f) = a*(f), [cf. Infinite matrices and sequence spaces, p-283].
(ii) If Fg(1) is uniformly continuous in A in [0, ) for every g(x) in B(f),

then f(x) is said to be projective continuous (p-continuous) relative to

B(f), or a(f) B(f)-continuous, and it is said to be p-continuous in a(f), or

a(f)-continuous when B(f) = a*(f).

Thus form the definitions themselves we have the following two results.
4. Some Theorems on Projective Convergence

Theorem 4.1. A necessary and sufficient condition for the o(f) B(f)-
convergence of f(x) is that to every g(x) in B(f), and to every & > 0, there
corresponds a positive number N(g, g) such that, for all A, X' > N(g, g),

o0

[ 8@ . - helxhar| < o @

0
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[cf. Infinite matrices and sequence spaces, p-283].

Theorem 4.2. A necessary and sufficient condition that f,(x) should be
olf) B(f) -continuous is that to every g(x) in B(f), and to every & >0 there
corresponds a positive number 8(g, g) such that (4.1) holds for all non-

negative A and A" satisfying | L — 1| < 8(g, g).

Proof. We know that in the case of sequence spaces (see I.M., 283), af -

convergence always implies co-ordinate convergence (c-convergence), but in
the case of function spaces, as we shall see below o(f) B(f) -convergence does
not necessarily imply c-convergence and hence also does not imply parametric

convergence.

For example, Let f, (x) = cos Ax, so that f,(x) € o.(f).

Let g(x) be any function in o;(f), then by the Riemann-Lebesgue

Theorem, we have

0

lim | g(x) cos Ax dx = 0
A—>0 0

le.,

lim j fiulx) g(x) dx = 0
0

And therefore, by the definition of projective convergence f,(x) is o, (f)-cgt.
But cos Ax does not tend to a limit as A — oo. Hence f; (x) = cos Ax is not c-
cgt, and so is not A-cgt. Thus o(f)-convergence does not imply c-convergence
and so in general a(f) B(f)-convergence does not necessarily imply co-
ordinate convergence. It is remarked that o;(f) > ¢(f); thus, even the
fulfilment of the condition B(f)> ¢(x) does not ensure that o(f) B(f)-
convergence necessarily implies c-convergence.

However, Theorem 4.3 established below gives sufficient conditions under

which projective convergence implies parametric convergence.

We shall say that f; (x) € m(f), when for almost all x > 0, f;(x) is always
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either monotonic increasing or monotonic decreasing with respect to A
in [0, ©).

Theorem 4.3. If B(f) = ¢(x) and f,(x) € m(f), and fy(x) is o(f) B(f)-
cgt, then f(x) is A-cgt.

Proof. Suppose that f(x)e m(f),, B(f) = ¢(f) and that f(x) is
a(f) B(f) -cgt.

Since f,(x) is o(f) B(f)-cgt to every g(x) in B(f) and to every & >0,
there corresponds by (2.1), a positive number N(g, g) such that for all
A, A = N, 8),

[ ) 1hx) - ) x| <o +2)
0

If possible, suppose that there exist € > 0 and an unbounded set F c [0, »)

such that, for all A, ' in F,

| fu(x) = folx)| > e (4.3)
for all x in E, where E is a subset of [0, ©) and is of finite positive measure,
say m(E).

L for x in E
Take g(x) = {m(E)’
0, elsewhere,

Then g(x) € ¢(f), and consequently g(x) e B(f), by the hypothesis Then

for this g and that ¢ for which (4.3) is true, there exist IV, such that by (4.2),
forall A, M > N,

1
‘ J.m h(x) = fr(x)f dx| <e,
E

le.,
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oty )| ) = ele) | e < o (@4
E

Since fi(x) € m(f),, by hypothesis (4.4) is obviously true for all A, 1" in
F c [N, «).

But for all A, ' in F N[N, «), by (4.3),

iy )| 50~ @) dx > s s m(E) = 5 (4.5)
E

Thus (4.5) contradicts (4.4), hence (4.3) is impossible and therefore
| h(x) = fur(x)[ < e

for almost all x >0 and all A, A’ > N(g) for every ¢ > 0 and so f;(x) is A-

cgt.
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