

INVERSE ECCENTRIC DOMINATION IN GRAPHS

R. JAHIR HUSSAIN and A. FATHIMA BEGAM

PG and Research Department of Mathematics Jamal Mohamed College (Autonomous) Tiruchirappalli-620 020, Tamilnadu, India E-mail: mathfab06@gmail.com

Abstract

In this paper, we discussed some results of inverse eccentric domination number of graphs in graph theory.

1. Introduction

Definition 1.1. A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and also for every v in V - D there exist at least one eccentric point of v in D. The eccentric dominating set is a minimal eccentric dominating set if no proper subset D' of D is an eccentric dominating set. The minimal eccentric dominating set with minimum cardinality is called as a minimum eccentric dominating set. The cardinality of minimum eccentric dominating set is known as eccentric domination number and is denoted by $\gamma_{ed}(G)$.

Definition 1.2. A spider is a tree on 2n + 1 vertices obtained by subdividing each edge of a star $K_{1,n}$ where $n \ge 3$.

2. Inverse Eccentric Domination in Graphs

Definition 2.1. Let D be the minimum eccentric dominating set in a graph G. If V - D contains an eccentric dominating set D' of G then D' is called as an inverse eccentric dominating set with respect to D.

²⁰¹⁰ Mathematics Subject Classification: 03E72; 54H25; 47H10; 54A40.

Keywords: inverse eccentric dominating set; minimum inverse eccentric dominating set; inverse eccentric domination number.

Received January 21, 2020; Accepted May 13, 2020

R. JAHIR HUSSAIN and A. FATHIMA BEGAM

Definition 2.2. An inverse eccentric dominating set D' is called a minimum inverse eccentric dominating set if D' consists of minimum number of vertices among all inverse eccentric dominating set.

Definition 2.3. The number of vertices in a minimum inverse eccentric dominating set is known as the inverse eccentric domination number of a graph *G* and is denoted by $\gamma_{ed}^{-1}(G)$.

Theorem 2.1. Let D be a minimum eccentric dominating set of a graph G. Then there exist inverse eccentric domination number of G with respect to D iff every vertex in D has at least one eccentric vertex in V - D.

Proof. Let *D* be a minimum eccentric dominating set of a graph *G* and also *G* has inverse eccentric domination number with respect to *D*. Let D' = V - D.

Then D' contains minimum eccentric dominating set. That is D' is also eccentric dominating set.

Therefore, every vertex in D has at least one eccentric vertex in D'.

Conversely, let D be a minimum eccentric dominating set of G and every vertex in D has at least one eccentric vertex in V - D.

We know that V - D is also dominating set of *G*. Therefore, V - D is an eccentric dominating set of *G* with respect to *D*.

 \Rightarrow V – D contains minimum eccentric dominating set D'. Then D' is the minimum inverse eccentric domination set with respect to D whose cardinality is the inverse eccentric domination number of G.

Theorem 2.2. $\gamma_{ad}^{-1}(K_n) = 1$ for all $n \ge 2$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of K_n where $n \ge 2$. We know that $\gamma_{ed}(K_n) = 1$.

Let $D = \{v_1\}$ be the minimum eccentric dominating set of K_n .

Any vertex v_i in V - D is a minimum inverse eccentric dominating set. That is $D' = \{v_i \in V - \{v_1\}\}$ and anyone v_i in D' is a minimum inverse

eccentric dominating set of G with respect to D. Therefore, $\gamma_{ed}^{-1}(K_n) = 1$ for all $n \ge 2$.

Theorem 2.3.
$$\gamma_{ed}^{-1}(K_{m,n}) = 2$$
 for all $m \ge 2$ and $n \ge 2$.

Proof. Let $G = K_{m,n}$. Then $V(G) = V_1 \cup V_2$. $|V_1| = m$ and $|V_2| = n$ where $m \ge 2$ and $n \ge 2$. We know that $\gamma_{ed}(K_{m,n}) = 2$.

Let $D = \{u_1, v_1\}$ where $u_1 \in V_1$ and $v_1 \in V_2$ is a minimum eccentric dominating set. Then any vertex $u_i \in V_1 - \{u_1\}$ dominates all the vertices of V_2 and it is an eccentric vertex of all the vertices in $V_1 - \{u_i\}$. Similarly for $V_2 - \{v_1\}$.

Let $D' = \{u_i, v_i\}$ where $u_i \in V_1 - \{u_1\}$ and $v_i \in V_2 - \{v_1\}$. Then any two vertices $\{u_i, v_i\} \subseteq D'$ where $u_i \in V_1 - \{u_1\}$ and $v_i \in V_2 - \{v_1\}$ is a minimum inverse eccentric dominating set of G with respect to D. Therefore, $\gamma_{ed}^{-1}(K_{m,n}) = 2$ for all $m \ge 2$ and $n \ge 2$.

Theorem 2.4.

(i) $\gamma_{ed}^{-1}(W_4) = 1$
(ii) $\gamma_{ed}^{-1}(W_5) = 2$
(iii) $\gamma_{ed}^{-1}(W_6) = 3$
(iv) $\gamma_{ed}^{-1}(W_7) = 2$
(v) $\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil n \ge 8 \text{ and } n \ne 3m+1 \text{ where } m \ge 3.$
$\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}n \ge 8 \text{ and } n = 3m+1 \text{ where } m \ge 3.$

Proof.

(i) Let $G = W_4 = K_4$. Hence by Theorem 2.2 $\gamma_{od}^{-1}(W_4) = 1$.

(ii) Let $G = W_5$. We know that $\gamma_{ed}(W_5) = 2$.

Let $D = \{u_1, u_2\}$ is a minimum eccentric dominating set. Then $D' = V - D = \{u_3, u_4, v\}$ where v is the central vertex of W_4 . Consider $D'' = \{u_3, u_4\} \subseteq D'$ which is a minimum inverse eccentric dominating set of G with respect to D. Therefore, $\gamma_{od}^{-1}(W_5) = 2$.

(iii) Let $G = W_6$. We know that $\gamma_{ed}(W_6) = 3$

Let $D = \{u_1, u_2, v\}$ where u_1 and u_2 are adjacent non-central vertices and v is a central vertex. Consider $D' = V - D = \{u_3, u_4, u_5\}$ which is a minimum inverse eccentric dominating set. Therefore, $\gamma_{ed}^{-1}(W_6) = 3$

(iv) Let $G = W_7$. We know that $\gamma_{ed}^{-1}(W_7) = 2$.

Let $D = \{u_1, u_4\}$ is a minimum eccentric dominating set. Then $D' = V - D = \{u_2, u_3, u_5, u_6, v\}$ where v is the central vertex. Consider $D'' = \{u_2, u_5\}$ where u_2 dominates u_1, u_3, v and u_5 dominates u_6, u_4, v and also where u_2 is an eccentric point of u_6, u_4, v and u_5 is an eccentric point of u_1, u_3, v . Therefore, D'' is the minimum inverse eccentric dominating set of G with respect to D. Hence $\gamma_{ad}^{-1}(W_7) = 2$.

(v) Let $G = W_n$ for $n \ge 8$. We know that $\gamma_{ed}(W_n) = 3$ for $n \ge 7$.

Let $D = \{u_1, u_2, v\}$ is a minimum eccentric dominating set of G where v is the central vertex and u_1, u_2 are adjacent non-central vertices. Then $D' = V - D = \{u_3, u_4, \dots, u_{n-1}\}$. In W_n each vertex dominates two adjacent non-central vertices and the central vertex and also each non-central vertices is the eccentric vertex of all other non-adjacent non-central vertices and adjacent central vertex.

Case (i): n is even

(a) If n = 2k = 3m + 2 (*m* is even)

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021

644

$$\Rightarrow k = 3 \frac{m}{2} + 1$$
$$\Rightarrow k = 31 + 1 \text{ [since let } \frac{m}{2} = -1\text{]}$$

Consider $D'' = \{u_3, u_6, \dots, u_{k-1}, u_{k+2}, u_{k+5}, \dots, u_{2k-2}, u_{2k-1}\}$ is a minimum inverse eccentric dominating set.

Therefore,
$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$$
 when $n = 2k = 3m + 2$ (1)
(b) If $n = 2k = 3m + 1$ (*m* is odd)
 $\Rightarrow 2k = 3(m - 1) + 4$
 $\Rightarrow k = 3\frac{(m - 1)}{2} + 2$
 $\Rightarrow k = 31 + 2$ [since let $\frac{(m - 1)}{2} = 1$].

Consider $D'' = \{u_3, u_6, \dots, u_{k-2}, u_{k+1}, u_{k+4}, \dots, u_{2k-4}, u_{2k-1}\}$ is a minimum inverse eccentric dominating set of *G* with respect to *D*.

Therefore,
$$\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}$$
 when $n = 2k = 3m + 1$ (2)
(c) If $n = 2k = 3m$ (*m* is even)
 $\Rightarrow k = 31$ [since let $1 = \frac{m}{2}$]

Consider $D'' = \{u_3, u_6, \dots, u_{k-3}, u_k, u_{k+3}, \dots, u_{2k-3}, u_{2k-1}\}$ is a minimum inverse eccentric dominating set.

Therefore,
$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$$
 when $n = 2k = 3m$ (3)

From (1), (3) and (2)

$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$$
 when *n* is even and $n \ge 8$ and $n \ne 3m + 1$ where $m \ge 3$.

 $\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}$ when *n* is even and $n \ge 8$ and n = 3m + 1 where $m \ge 3$. (4)

Case(ii): n is odd

(a) If n = 2k + 1 = 3m + 1 (*m* is even) $\Rightarrow 2k = 3m$ $\Rightarrow k = 3l$ [since let $l = \frac{m}{2}$]

Consider $D'' = \{u_3, u_6, \dots, u_{k-3}, u_k, u_{k+3}, \dots, u_{2k-3}, u_{2k}\}$ is a minimum inverse eccentric dominating set of *G* with respect to *D*.

Therefore,
$$\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}$$
 when $n = 2k + 1 = 3m + 1$ (5)
(b) If $n = 2k + 1 = 3m + 2$ (*m* is odd)
 $\Rightarrow 2k = 3(m-1) + 4$
 $\Rightarrow k = 3\frac{(m-1)}{2} + 2$
 $\Rightarrow k = 3l + 2$ [since let $\frac{(m-1)}{2} = l$]

Consider $D'' = \{u_3, u_6, \dots, u_{k-2}, u_{k+1}, u_{k+4}, \dots, u_{2k-4}, u_{2k-1}, u_{2k}\}$ is a minimum inverse eccentric dominating set of *G* with respect to *D*.

Therefore,
$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$$
 when $n = 2k + 1 = 3m + 2$ (6)
(c) If $n = 2k + 1 = 3m$ (*m* is odd)
 $\Rightarrow 2k = 3(m - 1) + 2$
 $\Rightarrow k = 3\frac{(m - 1)}{2} + 1$
 $\Rightarrow k = 3l + 1$ [since let $\frac{(m - 1)}{2} = l$]

Consider $D'' = \{u_3, u_6, \dots, u_{k-4}, u_{k-1}, u_{k+2}, \dots, u_{2k-5}, u_{2k-2}, u_{2k}\}$ is a minimum inverse eccentric dominating set of *G* with respect to *D*.

Therefore, $\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$ when n = 2k + 1 = 3m (7)

From (6), (7) and (5)

$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil$$
 when *n* is odd and $n \ge 8$ and $n \ne 3m + 1$ where $m \ge 3$.
 $\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}$ when *n* is odd and $n \ge 8$ and $n = 3m + 1$ where ≥ 3]. (8)

From (4) and (8)

m

$$\gamma_{ed}^{-1}(W_n) = \left\lceil \frac{n}{3} \right\rceil n \ge 8 \text{ and } n \ne 3m+1 \text{ where } m \ge 3.$$

$$\gamma_{ed}^{-1}(W_n) = \frac{(n-1)}{3}n \ge 8 \text{ and } n = 3n+1 \text{ where } m \ge 3.$$

Theorem 2.5. For a spider graph T, $\gamma_{ed}^{-1}(T) = n - \Delta(T) - 1$ when $n = 2k + 1 \ge 9$ is the number of vertices of T.

Proof.

Le T be a spider graph with $n = 2k + 1 \ge 9$. Then r(T) = 2 and diam (T) = 4.

We know that $\gamma_{ed}(T) = n - \Delta(T) - 1 = k = |N(u)|$ where *u* is the central vertex of *T*.

Let *D* be a minimum eccentric dominating set containing k - 2 vertices of N(u) and 2 pendent vertices of *T* which are not adjacent to the vertex which we have selected from N(u) to form *D*. Then D' = V - D contains remaining k - 2 pendent vertices, and 2 vertices from N(u) and the central vertex *u*.

Let D'' be the subset of D' containing k-2 pendent vertices and 2 vertices of N(u). Then D'' is the minimum inverse eccentric dominating set of T with respect to D.

Therefore, $\gamma_{ed}^{-1}(T) = |D''| = k - 2 + 2 = k = n - \Delta(T) - 1.$

References

- F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Publishing Company, 1990.
- [2] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric domination in graphs, International Journal of Engineering Science, Advanced Computing and Biotechnology 1(2) (2010), 55-70.
- [3] T. N. Janakiraman, On some Eccentricity properties of the graphs, Thesis, Madras University, Tamil Nadu, India, 1991.
- [4] V. R. Kulli and S. C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett. 14 (1991), 473-475.
- [5] V. R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.