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Abstract

Fermatean fuzzy sets, involving membership, non membership and hesitancy issues gift
mathematically a conventional structure. Owing to these deliberation, it is possible to define
several execution of these sets. In the actual information ten distinct operations on such sets are
defined. These ten operations on Fermatean fuzzy sets bear interesting properties. In this
paper, we have identified and proved various properties. especially those involving the operation

A — B defined as Fermatean fuzzy implication with other operations.
Introduction

Senapati and Yager [11] outlined basic operation over FFSs and
introduced new score functions and accuracy function of FFSs. The
generalization of FFSs is the sum of the cubes of the values of the degree of

membership and non-membership is not exceeding one.

The idea of an intuitionistic fuzzy matrix (IFM) was presented by Khan et
al. [5] also, all the while Im et al. [4] to sum up the idea of Thomason’s [12]
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fuzzy matrix. Every component in an intuitionistic fuzzy matrix is

communicated by an arranged pair (<(laij, Baij>) with o, Bg; € [0, 1].

Khan and Pal [6] characterized some fundamental tasks and relations of
IFMs including maxmin, minmax, supplement, logarithmic whole,
arithmetical item and so on and demonstrated equity between IFMs. After
the presentation of IFM hypothesis, numerous scientists endeavoured the
significant part in IFM hypothesis [3, 8, 9].

For example Let A be the fuzzy set given by (0.8, 0.65) where the degree
of the membership is 0.8 and the degree of the non-membership is 0.65. The

sum of the values of the degree of membership and non-membership is
1.45 > 1. This shows that A is not an Intuitionistic fuzzy set. Consider the

sum of the squares of the values of the degree of membership an non-
membership is (0.8)% + (0.65)% > 1. exceeding one which shows that A is not
an Pythagorean fuzzy set. Consider the sum of the cubes of the values of the
degree of membership and non-membership is (0.8)> + (0.65)> < 1. Hence A

is known as Fermatean Fuzzy set. FFSs is most effective than PFSs and IFSs.

This is to say that the FFSs have extra unpredictability than IFSs and
PFSs, and are skilled to deal with more elevated levels of unpredictability.

The paper is characterized as follows:

In section 2 some basic definitions associated with IFS and FFS theory

are conferred and giving the implication operator in Fermatean Fuzzy Sets.

In section 3 we define Fermatean fuzzy implication operator and new
results associated with the standard Fermatean fuzzy implication operator
are proved.

2. Preliminaries

In this section some definitions of Intuitionistic Fuzzy sets theory and
Fermatean fuzzy set theory are given.

Let Y = {y;, ¥9, ---, ¥} be a finite universe of discourse

Definition 2.1 [1]. An intuitionistic fuzzy set in Y is given as
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A ={y, as(y), Ba(y)/y €Y} where oy : Y—[0,1] and By : Y [0, 1] such
that 0 < a4(y)+Ba(y) <1. The degree of membership is denoted as o,(y)
and non-membership is denoted as B4(y) of y € Y to A.

Definition 2.2 [12]. A Fermatean fuzzy set A is defined as
A={y aa().Ba() |y eY} where oy :Y—[0,1] and B4 :Y-[0,1]

with the condition 0 < (04 (y))> + (Ba()? <1 forall y e Y.

The numbers a4(y) and By(y) denote the degree of membership and

non-membership of the element y in A.

Definition 2.3. Let FFS(Y) denote the family of Fermatean Fuzzy Sets

on the universe Y.

Let A, Be FFS(Y) isgivenas A = {(y, aa(y), Ba(y) | y e Y}

B = {(y, ap(y), Bg(y)) | ¥y € Y}. Then the following operators on FFS is
defined for y € Y as

a. AUB = {(y, max(a(y), ap(y)), min(Ba(y), Bp(y))/y € Y)}.
b. AN B = {(y, min(ax(y), ap(y)) maxB4(y), Br(¥))/y € Y)}.

c. A% ={(y, Ba(y), aa(y)/y e Y}

d A®p B =

(0 V@A) + (@O ~ (@aG)(@p()’. BAGBRGNY € V)

e. A@FB =

(3 0aap() YBAGY + BO) - BaN () [y < Y}

¢ A@B - {@, ﬁ(aA(y»%(aB(y»S sJ(sA(y>)3+(BB(y))3 /yey>}_

2 ’ 2

g A$B = {7, Yoa() + ap(r), YBAGBBG)/y € V)
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V204 (y)o () V3B 4 (»)B5() }
h. A#B =1(y, A , /y eY);.
{ Yoa)? + (@0 Y@ + Bp()°
i. A= B = {(y, min{ag(y), Ba(y)}, max{as(y)Bp(y))/y € Y)} (7]

Lemma 2.4. [2]. For a, B € [0, 1] then o -B < min(a, B) < 2(&“—;5) < %/oc_B
a+fp < a+p

< max(a, p) S a+P-o-B, of < 2@ +p+1) - 2

3. Results on Fermatean Fuzzy Implication Operator

In this section we state and demonstrate some new outcomes using '—'

Theorem 3.1. For A, B € FFS(Y)

(A~ B)@(A-B°) = A@B,

V)

=

. (A°~B)®p (A~ B°) = A®y B.

(AC —rB)QF(A—ch)C = A@FB.

e

o

. (A~ B)$(A—~ B = A$B.

. (A°~B)#(A-B) = A#B.

®

g

(A-Bf @(B—A) = A@B.

g. (A-B)f @ (B—-A)= A®p B
h. (A~ B)Yop(B—-A) = AopBC.

i. (A-B)\$(B—A)= A$B".

i. (A-BY#(B—A) = A#B°.

Proof. To prove (a):
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Using the Definition 2.3 and Lemma 2.4

(A~ B)@ (A~ BFY =

(%ﬁwﬂwf;@ﬂwf;$mwwgmﬂwﬁmeyj

=A@B.

To prove (f):

(A-B)Y @B-A) =

[%ﬁwA@WQGmUW’ﬁWM”f;@ﬂ”fmeY}

= A@B°.
Similarly we can prove (b), (c), (d), (e), (g), (h), (1) and ().
Theorem 3.2. For any A, B € FFS(y)

a. (A®p B)-(A@B)) =(A@B)~(A®p B)Y) = A®f B.
b. (A®p B - (A@B)) = (A@B)Y - (A®yp B)) = A@B.
c. (AopB)~(A@B)) =(A@B)-(A0pB)) = A@B.
d. (AopB)Y - (A@B)) = (A@B) ~(A®pB)) = AOpB.

e. (A®p B)~(A#B)) = (A#B)~(A®p BY) = A®y B.
f. ((A®p B —(A#B))= (A#B) ~(A®p B)) = A#B.

g. (AOpB)—-(A#B)) = (A#B)-(A0rB)) = A#B.

h. (AopB)Y ~(A#B)) = (A#BY —~(A®prB)) = AGpB.

i. (A®p B)~(A$BY)Y = (A$B)~ (A®p BY) = A®p B.
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j. (A®p B ~(A$B) = (A$BY —(A®p B)) = ASB.
k. (A@pB)~(A$BY) = (A$B)—~(A0pB)f) = A$B.
1 (A0pBY ~(A$B)) = (A$BY ~(AOpB)) = AOpB.

m. (AOpB) ~(A®r B))=(A®p B ~(A®prB)) = AOpB.
Proof. Using the Definition (2.3) and Lemma (2.4), to prove (a):

(A®F B)-(A@B)) =

o, Vs + (@) - (@a)P (@), BAGBEG)Y € Y)
- A®yp B 1)

(A@B)-(A®F BY) =

. Y(@a)? + (@) - (@a@)*(@p@)?, BAGBG)Y € Y)
=A®p B (2)
From (1) and (2), we obtain the result (a).

To prove (b):

(A®F B ~(A@B)) =

(y, ?)J (ca) +anb) sJ B0) + Ea0)' ), YJ

- A@B (3)
(A@B)-(A®f B)) =

{y, 3f@a0) + (ap0) a0+ Gu0)P ), YJ

- A@B )
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From (3) and (4), we obtain the result (b).

To prove (c):

(AopB)-(A@B)) =

{y, 3f@a0) + (ap0) 36100+ Gu0)P ), YJ

- A@B ()

(A@B)-(AopB)) =

[y, 3@a0) + Gu0 3[BA0N + BrO) ), YJ
=A@B (6)

From (5) and (6), we obtain the result (c).

To prove (d):

(AorB)' ~(A@B)) =

(0 0aop() VBAG) + BaG) -~ A BAG) [y € V)
=AOrB (7

(A@B)-(AoFB)) =

(0 0a@ap() YBA) + BaO) - Ba)BaG)’ /v € Y)
= AOfpB (8)
From (7) and (8), we obtain the result (d).

To prove (e):

(A®Fp B —(A#B)°) =

(9, %/(OLA(y))g +(aa() —(@a)(@a)’, BaBB(Y)/y € Y)
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- A®p B ©)

(A#B)-(A®F B)) =

o YA + (@G — (@a)P(p0)f, BaGBEG)y € Y)
=A®p B (10)
From (9) and (10), we obtain the result (e).

In a similar manner, we can prove the results (f), (g), (h), (1), (), k), (1)
and (m).

Corollary 3.3. For any AB e FFS(y)
(AorB) ~(A@B)) = (A@B)* - (A©FB))
= (AoFB) ~(A#B)) = (A#B)" - (A©FB))
=(AopB) ~(A$B)) = (A$B) - (AoFpB)

= (AopB) - (A®fp B)) = (A®p B —(AGpB)) = AOpB.

Corollary 3.4. For any A, B € FFS(y)
(A®p B ~(A@B)°) = (A@B)~(A®p B))
= (A®fp B)~(A#B)) = (A#B)~(A®F B))

=(A®fp B)-(A$B)°) =(A$B)~(A®F B)) = A®p B.

Theorem 3.5. For any A, B € FFS(y)
(A°~ B) ®p (A— B))@((A° ~ B)op(A— B°)) = A@B.
Proof. Using (b) and (c) of theorem 3.1 we have

(A~ B)®p (A~ B°YA®r B (11)

(A°~B)®p (A-B°YA®r B (12)
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Taking @ with (11) and (12), i.e.

1) @(12) =

y ?i/ (0a) + (@)’ - (@a(0)*(@p»)° + (0a () (@)’
: 5 :

?i/ Ba0)’ + @)’ - BA B0 + @A) Ba())’
2

y, a0l +@a0) PA0N + G50V,

=A@B.

Theorem 3.6. For any A, B € FFS(y)

(A~ B)®p (A~ B°))N((A°~ B)op(A~ B°))@

(A°~B)®r (A-B°)U(A°~B)op(A-B°))= A@B.

Proof. By taking and of (11) and (12), we get

(A°~B)®p (A~ B°))N((A°~ B)op(A~ B))

=(A®p B)N(AGFB) (13)
(A°~B)ep (A~ B°))U(A° -~ B)op(A~ B°))

= (A®fp B)U(AOFB) (14)

Using @ for (13) and (14) i.e. (13) @ (14)

_ [y, sJ(aAu»S (as0) :j(mmf 0200 )y v |- aan
Theorem 3.7. For any A, B e FFS(y)

(A ®p B)~(A@BY¥ U(A0rB)-(A@BY)]

Ul(A®r B)-(A@B) )Y N(AerB)~(A@B))]= A®r B.
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Proof. Using (a) and (c) of theorem 3.2, we have

(A®p B)-(A@B)') = A®r B (15)
(AopB)-(A@B)°) = A@B (16)
Take U with (15), (16)

(Aep BIU(A@B)U(A®r B)N(A@B))

o V@A) + (@O’ ~(@a)P@p(), Ba(BEG)/y € Y)
- A®yp B

Theorem 3.8. For any A, B € FFS(y)

[((AeFr B)-(A@B)) U(AorB)-(A@B))]

N[(A®r B)-(A@B)°) N(AorB)~(A@B))]= A®p B.
Proof. Take  with (15) and (16),

(Aep B)U(A@B)U((A®F B)N(A@B))

2 ’ 2

_ [y, :»j (0a)? + (@)’ sJ Ba0)’ + 800 ) v |- san

Theorem 3.9. For any A, B € FFS(y)

(A®p BY - (A@B)@(A0rB)-(A@B)) = A@B.

Proof. Using (b) and (c) of Theorem 3.1,

(A®F B ~(A@B)) = (A@B) 17
(AopB)-(A@B))" = (A@B) (18)

Take @ of (17) and (18), we get,
(AeB)@(A@B)=(A@B)
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Theorem 3.10. For any A, B € FFS(y)

=(A®p B -~ (A#B)@(AopB)-(A#B)°) = A@B.
Proof. Using Theorem 3.1.

(A®p B —(A#B)=(A#B)

(AOpB)' - (A#B)°) = (A#B)

Take @ of (19) and (20),
(A#B)@A#B) =

, V2004 ()0 p(») , V2B A(»)BB(»)
Voa0) + (@) VBN +BsG)

|y e Y}@

(i Pouablp)  V2Ba0)BE0) Weyj
Yoa)? + (@p()? YBsG) +BrG)°

iy Poablopt) _ VBAGRG) /er}
Va0l + @p) VB0 + Go()

= A#B.

Theorem 3.11. For any A, B € FFS(y)

(A®p B -(A$B)@((AGrB)~(A$B)) = A$B.
Proof. Using the results of (j) and (k) of Theorem 3.2,
(A®p B) ~(A$B) =(A$B)

(AopB)—-(A$B)) = (A$B)

Using @ of (22) and (23), we get A$ B.

Theorem 3.12. For any A, B € FFS(y)

(A@pB) —(A @ B)@(A ®p B)~(A0rBY) = A@B.
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Proof. Using the result (m) of theorem 3.2

(AopB)" -1 (A®F B)) =

(. 0a@ap) VB0 +Bs0)° - A0’ BsO) [y € Y) (24)

(A®p B)-(AopB)) =

O, V@A) + (@p() - (@A) (@), BAGBE()) (25)
Take @ of (24) and (25)

_{, eJ(aAw))?’ ;<a3<y>)3 | i/(m@»?’ ;(BB(y))g Iyev|-aeB

Conclusion

The properties demonstrated here give a knowledge into the FFSs, under
the set activities characterized before in the writing. Our investigation
prompts for additional properties as additionally for characterizing
potentially new activities. Accordingly there remains scope for contemplating
more properties of these sets emerging from those other characterizing set
activities that might be considered wutilizing alternate methods of

consolidating the capacities
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