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Abstract 

In the paper, we introduce the notion of strongly P-regular near-rings. We have displayed 

that a near-ring N is strongly P-regular if and only if it is also regular. A near-ring N is called 

left (right) strongly P-regular if for every ‘a’ there is a ‘n’ in N such that 

( )pnaapnaa +=+= 22  and ,anaa =  position P is an arbitrary ideal. We specify some new 

concepts and justify them with suitable examples. And also we discuss some of the theorems 

related to it. 

1. Introduction 

In mathematics, a near-ring (also near ring (or) nearing) is an algebraic 

structure similar to a ring but satisfying fewer axioms. Near-rings arise 

naturally from functions on the group. The antiquity of the concept of near-

ring is eminent influenced by the knowledge of ring theory. A near-ring is a 

ring (not undoubtedly with unity) if and only if addition is commutative and 

multiplication is also distributive on both sides is ample, and commutative of 
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addition follows unquestionably. The book of Pilz uses right near-ring, while 

the book of clay uses left near-ring. The thought of a regular near-ring was 

introduced in 1968 by J. C. Beidleman and later S. Leigh and H. E. 

Healtherly etc. S. J. Choi extended P-regularity of a ring to the P-regularity 

of a near-ring. Regular (von-Neumann regular) ring plays a vital role in the 

structure theory of rings which was first introduced by Von-Newmann. The 

generalization of rings (near-rings) plays a vital role in the development of 

mathematics. A lot of mathematicians studied and established various types 

of near-rings such as Boolean near-rings, IFP near-ring, etc. 

2. Preliminaries 

Definition 1. A near-ring N is an algebraic system with two binary 

operations addition and multiplication with the following properties, 

(i) ( )+,N  is a group (not necessarily abelian) 

(ii) ( ),N  is associative 

(iii) ( ) Nzyxzyzxzyx +=+ ,,  

(iv) ( ) .,, Nzyxzxyxzyx +=+  

Example 1. Every ring is a Near-ring. 

Example 2. Let  5,4,3,2,1,06 =Z  is a group under addition modulo 

6 and it is a semi group under multiplication modulo 6. And also satisfies the 

distributive laws, 

 

Clearly ( )+,6Z  is a near-ring. 

Example 3. ( )+,2Z  be the set  1,02 =Z  is near-ring. 

Definition 2. A subgroup M of a near-ring N with MMM •  is called 

a sub-near-ring of N. 
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Definition 3. Given a near-ring  00;, 0 == nNnNN  which is 

called the zero-symmetric part of    nnnNnnnNnNN c ==== ;0;,  

for every n’ in N is called the constant part of N. 

Note: 0N  and cN  are sub-near-ring of N. 

Definition 4. An element e in N is said to be an idempotent if .2 ee =  

Example 4. Let  5,4,3,2,1,06 =Z  be the near-ring under addition 

modulo 6 and multiplication modulo 6. And 64 Z  is an idempotent. 

Since 444 =  (module 6). 

Definition 5. A near-ring N is said to be regular if given Na   there 

exists an element Nn  such that .anaa =  

Example 5. Let ( ),2 NMN =  the near-ring of all 22   matrices, It is 

well known N is regular. If 
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then it is regular. 

Definition 6. Let P be ideal in N. Then N is said to be P-regular if Na   

there exists Nn  such that panaa +=  for some .Pp   And N is said to be 

strongly P-regular if for every there exists such that .2 pnaa +=  

Example 6. Let ( ) ,,,,,2
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Therefore it is strongly P-regular near-ring. 

Example 7. Let ( ) ,,;
0

0
2

















= Nxv
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NM  the near-ring of all 22   

matrices. If it is not P-regular and strongly P-regular. 

Example 8. ( ( ) )+,,4ZM  is a regular near-ring. But it is not a strongly 

regular near-ring. In particular, let  3,2,1,04 =Z  be the group of integer 

modulo 4, it is regular near-ring. 

Lemma 1 [1]. Suppose N is a left strongly regular near-ring if 0=ab  for 

some ba,  in N, Then .0bba =  

Lemma 2 [1]. Suppose N is a left strongly regular near-ring if 32 bb =  for 

some bN then .2 bb =  

Theorem 1. Let N be a left strongly P-regular near-ring. If for some na,  

in N and then it is P-regular. 

Proof. Since N be a left strongly P-regular near-ring pnaa += 2  for 

.Pp   ( ( )) 02 =+− apnaa  and by Lemma 1, ( ( )) 02 apnaaa =+−  and 

( ( )) .02 anapnaaana =+−  Therefore 

( ( )) ( ( )) ( )( ( ))pnaapnapnaaapnaa +−+−+−=+− 22222  

( )( ( ))pnaapanaa +−+−= 20  

( ( )) ( ) .000 22 panaapnappnaaanaa +−=+++−−=

 Now 

( ( )) ( ( ))( ( )) ( ( )) ( )( )paanapnaapnaapnaapnaa +−+−=+−+−=+− 00222232  

(( ) ) (( )( ) )paanapnapaanaa +−+−+−= 0000 2  
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( ) ( )( ) ( )pnappnaanaaapaana +−+−−+−= 2200000  

( ) ( )( ) ( )pnappnaaapaana +−+−−+−= 220000  

( ) ( ( )) .00
22 pnaapaana +−=+−=  

Hence by Lemma 2, we have ( ( )) ( ( )).222 pnaapnaa +−=+−  

Consequently,  

( ( )) (( ( )) apnaaapnaa
2220 +−=+−=  

( )( ) ( ) ( ) paanapaaaanaapaana +−=+−=+−= 000000  

( ( )) ( ( )).222 pnaapnaa +−=+−=  

Thus .2 pnaa +=  Hence .panaa +=  

Definition 7. We say that a near-ring N has the property () if it 

satisfies: 

(i) for any ba,  in 0, =abN  implies 0bba =  

(ii) for any a in 32, aaN ==  implies .2aa =  

Theorem 2. Let N be a right strongly P-regular near-ring. If pnaa += 2  

for some ba,  in N and .Pp   Then panaa +=  where P is arbitrary ideal. 

Proof. The proof is similar to the above theorem. 

Theorem 3. Let N be a P-regular near-ring if for some na,  in N and 

there exists Pp   if it is regular. 

Proof. Assume that N is a P-regular near-ring (i.e.) panaa +=  for 

some na,  in N and .Pp   Let take P be an arbitrary ideal (i.e.) .0=p  Now 

.0 anaanapanaa =+=+=  Therefore Nanaa ,=  is regular near-ring. 

Assume that N is a regular near-ring. We have to prove that N is            

P-regular near-ring. Since .anaa =  If take zero in right side only we get, 

0+= anaa  (since 0 is an arbitrary ideal P). Hence .panaa +=  
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Theorem 4. For any idempotent e and any n in peneenN +=,  where P 

be an arbitrary ideal. 

Proof. Let ee =2  and .Nn   Clearly .2 pneen +=  As we have by 

Lemma 1 ( )( ) .0enepeneenene =+−  As in the proof of Theorem 1, We can 

prove that ( )( ) .00
2

peneenpeneen −==+−  In Similar way ( )( ) =+−
3

peneen  

( )( ) .
2

peneen +−  Hence ( )( ) ( )( ) ( )peneenepeneenepeneen −−=+−=+− 00
2

 

( ) .0 peneenpeeneene −−=−−=  Thus .peneen +=  

Definition 8. A sub-near-ring B  of a near-ring N is called a bi-ideal of N 

if .BNBB   

Example 9. Let .,,,;
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under usual addition and matrix multiplication. Let 
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it is a bi-ideal. 

Example 10. Let 
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 it is not a bi-ideal. 

Theorem 5. Bi-ideal of strongly P-regular near-ring is a Bi-ideal near-

ring of N. 

Proof. We know that a sub-near-ring B of a near-ring N is called a bi-

ideal of N if Since strongly P-regular if ,2 pnbb +=  for some nb,  in N and 

.Pp   Now ( ) ( ) ( )( )BNBNBnpBNBBNBnpBNBnBNB =+=+=
2

 

( ) .BpBpnBpBNBnp +=+=+=+  Hence .BNBB   Therefore N is 

Bi-ideal of near-ring. 

3. Conclusion 

In mathematics, the study on near-rings into an object of the exercise for 

several bit of research. In this paper, we try to study the concepts of the 

strongly P-regularity and apply a few ideals in the particular concepts. 
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