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Abstract 

A nonlinear implicit energy conserving scheme and a linearly implicit mass conserving 

scheme are constructed for the numerical solution of a three-coupled nonlinear Schrödinger 

equation. Both methods are second order. The numerical experiments verify the theoretical 

results that while the nonlinear implicit scheme preserves the energy, the linearly implicit 

method preserves the mass of the system. In addition, the schemes are quite accurate in 

preservation of the other conserved quantities of the system. Elastic collision, creation of new 

vector soliton and fusion of soliton are observed in the solitary wave evolution. The numerical 

methods are proven to be highly efficient and stable in simulation of the periodic and solitary 

waves of the equation in long terms. 

1. Introduction 

We consider the 3-coupled nonlinear Schrödinger equation ([1]) 
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in the region 

  Ttxxxtx RL  0,:,  (2) 

with the initial conditions 

    .3,2,1,0, 0  kxx kk  (3) 

and the periodic boundary conditions 

    ,3,2,1,,,  ktxtx RkLk  (4) 

where    txtxi ,,,,1 21   and  tx,3  represent slowly varying 

amplitude of the pulse envelope for the underlying physical system. It is 

common to normalize   3,2,1,,  ktxk  such that   2
, txk  represents 

the optical power. The independent variables t and x represents time and 

space variables respectively. The parameters 3,2,1,  kk  are the 

dispersion coefficients,  is the Landau constants which describe the self 

modulation of the wave packets, and e is the wave-wave interaction 

coefficients which describe the cross-modulations of the wave packets. They 

are all real parameters and their values vary for different polarizations in 

nonlinear optics or for different kinds of basic flows in geophysical fluid 

dynamics. The system of equation (1) is a nonlinear dissipative partial 

differential equation with the third-order nonlinear effects in optical fibers. 

This equation arises as the governing model equation in several branches of 

physics including, for example, optics, fluid dynamics, quantum mechanics 

and biophysics (cf. [1, 2, 3, 4, 5, 6] and references therein). In reality, many 

nonlinear partial differential equations (PDEs) do not have exact solutions; 

even cannot be reduced to linear equations and their solutions mostly depend 

on numerical simulation. However, numerical methods may destroy the 

conserved quantities of the PDE. Therefore it is natural to construct some 

numerical methods that preserve the invariants of the PDE. 

The solution of (1) has some conservation properties, namely the mass 

conservations 
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and the energy conservation 
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These conservation laws would lead us to believe that solutions ought to exist 

globally and be stable [7]. Although the 3-CNLS system (1) is not integrable 

in the sense of inverse scattering method, there is a special case for which it 

is integrable, i.e. soliton solutions can be constructed. The 3-CNLS system (1) 

is integrable if    1331213313221 ,,  e  

,312  e  otherwise it is not integrable [8]. For non-integrable cases, 

where the parameters are different, numerical methods have to be used in 

order to understand different nonlinear phenomena that arise by the 

interaction of stable and unstable wave packets in the 3-CNLS system. 

The system of equation (1) reduced to 2-CNLS equation when we omit one 

of the complex valued function   .3,2,1,,  jtxj  There are many 

computational work for 2-CNLS equation. Some of the them are symplectic 

and multisymplectic schemes ([1, 18, 19]), the variational iteration method 

[20], the Hopscothch method [21], Galerkin finite element method [22], and a 

fourth-order explicit Runge-Kutta method [23]. Recently, the main attention 

for the 2-CNLS equation is finite difference conservative schemes [24, 25, 26, 

27]. However, they are not completely systematic either in their derivation or 

in their applicability. Although there are numerous works for the 2-CNLS 

equation, theoretical and numerical works for the 3-CNLS equation (1) are 

limited. In [9], exact bright one-soliton and two-soliton solutions for 

 3,2,1,1  jj  and e  have been obtained and some shape changing 

collisions have been given. Some new solutions have been reported in [10]. 
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Explicit partially coherent soliton solutions have been obtained in [11, 12]. 

Exact dark soliton solutions have been given in [13]. A new periodic wave 

solution is obtained and its stability analysis is discussed in [1]. Several 

computational methods have been proposed for the system of equation (1) 

such as six-point multisymplectic scheme [1], semi-explicit multi-symplectic 

splitting scheme [14]. In [17], various split-step spectral (SSSP) scheme are 

proposed. They are proved to be mass conserving and to admit the exact 

plane wave solution. In [15] a new central difference and quartic spline 

approximation based exponential time differencing Crank-Nicolson (ETD-CN) 

method are used for the numerical solution of 3-CNLS equation (1). In [16] a 

new version of Cox and Matthews third order exponential time differencing 

Runge-Kutta (ETD3RK) scheme based on the (1, 2)-Padé approximation to 

the exponential function is introduced and some numerical results are 

presented for the discrete solution of the equation (1). But none of these 

methods are energy preserving. Up to the authors’ knowledge there are no 

numerical studies on the energy preservation of the 3-CNLS equation in the 

literature. Therefore, it is still very challenging to develop an energy 

preserving scheme for the 3-CNLS equation. In this paper, an implicit energy 

conserving numerical scheme and a linearly implicit mass conserving scheme 

are proposed for the numerical solution of the 3-CNLS equation. The energy 

conserving scheme is developed based on the Average Vector Field (AVF) 

method. The AVF method is first introduced in [28]. In [29] it is described as 

a novel class of B-series methods that preserves energy for all (canonical) 

Hamiltonian vector fields. An extension of the AVF method to the canonical 

and non-canonical Hamiltonian systems are discussed in [30, 31]. In [32] AVF 

method is applied to Hamiltonian partial differential equations (PDEs) with 

constant symplectic structure. In [33] AVF method is applied to some PDEs in 

bi–Hamiltonian form with nonconstant Poisson structure. The energy 

preserving AVF method is applied to the coupled Schrödinger-KdV equations 

in [34]. In [35] a high order energy preserving scheme for the strongly 

coupled nonlinear Schrödinger system is proposed by using the AVF method. 

In addition to approximation of PDEs, the approximation of functions by 

trigonometric or algebraic polynomials is also an important topic of 

mathematical studies. Function approximation has many application areas 

such as data representation, signal processing, numerical analysis, and 

solutions of differential equations (see, for example [36, 37, 38, 39, 40]). 
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This paper is organized as follows. In section 2, a fully implicit energy 

conserving scheme and a linearly implicit mass conserving scheme are 

proposed to the 3-CNLS equation (1). In section 3 some numerical 

experiments are carried out to show the efficiency and reliability of the 

proposed schemes in long term integration. The paper ends with a brief 

conclusion in section 4. 

2. Numerical Schemes 

To establish the numerical approximation schemes for the 3-CNLS 

equation (1), the rectangular domain   in (2) is divided into small grids by 

the parallel lines  1,,2,1  Mjxx j   and  ,,,1,0 Nntt n   

where ,,  ntjhxx nLj  and  ,,2,1,  jTNxxMh LR  

.,,1,0;1 NnM   Here xh   and t  are spatial and temporal 

step sizes, respectively. Let nj,z  be the approximation to the exact solution 

 nj tx ,z  at the regular grid point  ., nj tx  The periodic boundary condition is 

used in all numerical methods. We propose the following two conservative 

schemes for the numerical integration of the 3-CNLS equation (1). 

2.1. An implicit energy conserving scheme 

We decompose the complex valued functions 21,   and 3  into real and 

imaginary parts by using 

           ,,,,,,,, 21 txivtxutxtxibtxatx   

     txiqtxptx ,,,3   (7) 

and defining   ,,,,,, 6
T

vqbupaz  the 3-CNLS equation (1) can be 

expressed as the infinite dimensional Hamiltonian form 
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where 0 and I are the zero and identity matrices of dimension 3. Here the 

variational derivative is given by 
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For the system (1), the Hamiltonian   is the energy defined by (6). For the 

numerical treatment, the second order spatial differential operator 
2
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so that the infinite Hamiltonian system (8) is reduced to the finite-
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is the discrete analog of the energy  z  in (6) and 
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where 0  and I  are zero and identity matrices of dimension 3M. Then, we 

discretize the system of the ordinary differential equations (9) in time by 

using the second order AVF method [28, 32] and obtain 

   






1

0
1

1 .1 dH
t nn

nn ZZJ
ZZ

 (12) 

The scheme (12) is a discrete gradient scheme and preserves the energy (10) 

without any restriction of at every time step [28]. In order to show this, we 

take the scalar product of both sides of the system (12) by 

   .1
1

0
1

T

nn dH 







 ZZ  (13) 

Then, the right-hand side of (12) becomes zero by the skew-symmetry of the 

matrix J. It follows that the left-hand side of (12) reduced to 

      

1

0
11 ,01 dH nnnn ZZZZ  (14) 

i.e. 

   
 

1

0
1 ,01 dH

d

d
nn ZZ  (15) 

and 

   .1 nn HH ZZ   (16) 

So that we get 

     .01 ZZZ HHH nn     (17) 

The existence of the above discrete energy conservation law (16) guarantee 

that the numerical scheme will not blow-up and the scheme (12) will be stable 

[41, 42]. The local truncation error of the scheme (12) is complicated and will 

not be explored here. For linear vector field, the scheme is reduced to the 

implicit midpoint rule. In conservative schemes, the temporal order of a 

scheme may need to be much greater than the spatial order. The temporal 

order plays an important role in long-time integration. The method (12) is 

second order convergence in time. Generalization of the method (12) to higher 
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order can be obtained in [29]. For polynomial Hamiltonian (10), the integral 

in (12) is evaluated exactly. The scheme (12) will be compared with the 

linearly implicit scheme presented in the following section. 

2.2. A linearly implicit mass conserving scheme 

Following [27, 41], we propose the linearly implicit two–level scheme 

(LIS) for the numerical solution of (1) 
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This method is a linearly implicit method and a not self-starting method. In 

order to start the iteration in (18), two initial values 0
j

  and 1
j  are required. 

0  is obtained from the initial condition. 1  will be obtained from the 

Forward Euler method with a small step size .0001.0t  Then, ,, 32   

are obtained from the two-step scheme (18). 
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Theorem 2.2.1. The two-level scheme (18) is conservative in the sense 
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for Nn ,,2,1,0   where ,, 21
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in the multiplication give real values under periodic boundary conditions. 

Taking the imaginary terms in this multiplication, we get 
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This completes the proof of the first conserved quantity .0
11 QQn   Other 

conserved quantities 0
22 QQn   and 0

33 QQn   can be shown similarly. 

2.2.1. Accuracy, stability and convergence of the scheme 

Using the Taylor series expansions about  nm tx ,  of all terms in the 

scheme (18), we get the principal part of the local truncation error 

       
,1

22126 ,

2

,

2

,

2

,

2

ttk
n
mxxttkxxxxktttk S

ttxt












 (21) 

where .3,2,1k  This shows that the proposed scheme (18) is of order 

     .22
xt    The proposed scheme is consistent since the principal 

part of the local truncation error goes to zero as .0,  tx  

To study stability of this scheme, let ,
,

n
j

n
jk

Z  and consider the 

linearized form 
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where the constant term  .,max
~
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  By von Neumann stability 

analysis, we substitute 
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into (22), and get 
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where .
2x

t
r




  This shows the two-step scheme (18) is unconditionally 

stable in the linear sense. For the convergency of the scheme we will refer to 

the Lax equivalence theorem which is only applied to well-posed linear 

initial-value problems. Although the 3-CNLS equation (1) is a nonlinear PDE, 

experience show that stability criteria for the linearized finite difference 

scheme can be effective in practice. The nonlinear finite difference scheme 

that is consistent and whose linearized equivalent is stable generally 

converge, even for nonlinear finite difference scheme [43, 44]. 

3. Numerical Results 

In this section, several test problems are applied to show the efficiency 

and accuracy of the proposed numerical scheme (18). In all computations we 

choose 1321   and .1  Conservation of the mass and the 

energy are measured by looking the error norms 

,max,max
0

0

1

0

1
k

k
n
k

Nn
kn

n

Nn Q

QQ
Q

E

EE
E













 (24) 

where 3,2,1k  and 00 , QE  are the initial discrete energy and mass, and  

nn QE ,  are discrete energy and mass at ,tnt   respectively. Here nE  is 

the hamiltonian (10). The discrete masses n
k

Q  are defined as  


M

j

n
kj1

2
 for 

the AVF scheme. The discrete masses (19) are used for the LIS. 

3.1. Unstable periodic wave solution 

In the first test we will look at the evolution of unstable periodic wave of 

the 3-CNLS equation (1) with .1e  The following initial conditions are used 

[1] 

          ,cos1.013.0,cos1.012.0 21  xxxx   

    ,cos1.012.03 xx   (25) 

where  is the phase difference. We choose 5.0  which implies that the 

plane wave (25) is unstable. We solved the problem (1)-(4) on the interval 

 44 x  with 128M  spatial grid points and a time step of length 
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3105 t  and compare the schemes (12) and (18) with the Exponential 

time differencing Crank-Nicolson (ETD-CN) method with a quartic spline 

interpolation approximation [15] and the multisymplectic six-point scheme 

[1]. For comparative purpose we compute 
2
21  and 

2
22  and used the 

same error     2
2

2
2

0,,  T  as in [15]. Since the value of 
2
23  is 

same with ,
2
21  it is not presented in the test. According to the initial 

values (25), the exact values of 
2
21  and 

2
22  at 0t  are 

1.00515481265051 and 1.50773221897576, respectively. From the Table 1 we 

see that the linearly implicit scheme (LIS) (18) conserves mass 

2,1,
2
2

 jj  exactly. Moreover, the AVF scheme (12) preserves the mass 

better than the multisymplectic six-point scheme [1] and the Exponential 

time differencing Crank-Nicolson (ETD-CN) method with a quartic spline 

interpolation approximation [15]. Figure 1 represents the surface of the 

destabilized periodic waves 1  and 2  for 0  and 47  up to 

,80T  by using the AVF scheme (12). The two-step scheme (18) represents 

the same surfaces, which are not shown here. From the figure we see that 

both schemes well simulate the periodic wave. We also see that addition of a 

phase difference to the wave 2  affects the evolution of wave and decrease 

the number of oscillations (see [1]). 

Table 1. Comparison of conservations in ,2,1,
2
2

 jj  via the 

multisymplectic six-point scheme [1], the Exponential time differencing 

Crank-Nicolson (ETD-CN) method with a quartic spline interpolation 

approximation [15] and the scheme (18) 

 2
21  

2
22  

 20T  80T  20T  80T  

Error in [1] 5.7e – 04 3.2e – 05 8.7e – 04 8.0e – 05 

Error in [15] 1.1e – 05 2.2e – 05 5.4e – 05 6.0e – 05 

Error in AVF 1.4e – 07 9.4e – 09 2.2e – 07 1.4e – 08 

Error in TSM 2.5e – 14 1.0e – 13 3.8e – 14 1.4e – 13 
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Figure 1. Surfaces of destabilized waves via the 2-step scheme (18). Effect of 

the phase difference . 

3.2. Solitary wave solution 

We consider the 3-CNLS equation (1) with the initial condition 

     ,expsech20, 110111 xivxxrrx   

     ,expsech20, 220222 xivxxrrx   

     ,expsech20, 330333 xivxxrrx   (26) 

to see the evolution of solitary wave solution. In the initial conditions (26), 

 0,1 x  represents a solitary wave located initially at the position 10x  with 

velocity .1v  

3.2.1. Elastic collision   :1e  

We consider the problem (1)-(4) in the region 4040  x  so that the 

boundaries do no effect the solitary wave propagation. We take 
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10,41,0.1,0.1,02.0,400 2010321321  xxvvvrrrtM  

and .3030 x  Table 2 displays some errors correspond to the AVF scheme 

(12) and the LIS scheme (18) for various space and time steps. It can be seen 

from the Table 2 that both scheme produce remarkable reduction in the 

errors when the step sizes are reduced and convergence is evident. Figure 2 

represents the evolution of solitary waves for 200  t  and .1e  From the 

figure we see that the waves 1  and 3  moves to the right, while the wave 

2  move to the left in time. At the time 20t  collision phenomena occurs. 

During collision we observe a decrease in the amplitudes of the waves, but 

after the collision there is a roundup in the amplitudes. We see that the after 

collisions, the waves move forward in the same direction and three waves 

emerge without change in their shapes and velocities. This shows that the 

collision is elastic. In the context of biophysics the Figure 2 shows the 

interaction of three solitions during theirs propagation through the alpha 

helical protein chain [4]. From the Figure 2(d), we can conclude that the total 

energy of the three solitions are found to be conserved and there is no change 

in the distribution of energy among them in the neighbouring spines keeping 

the total energy conserved. Table 3 shows the errors in conservations 

properties (5) and (6). From the table we see that while the AVF scheme (12) 

preserves the energy (6) better than the linearly implicit scheme (18), the 

linearly implicit scheme (18) preserves the masses (5) better than the AVF 

scheme (12). In addition to the Table 3, the Figure 3 verifies the theoretical 

results (17) and the Theorem 2.2.1. 
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Table 2. Accuracy in solitary wave solution at time .1T  

 x  t  
1Q  

2Q  
3Q  


E  

 0.25 0.25 1.0e – 3 1.3e – 3 4.6e – 5 3.8e – 10 

  0.125 7.9e – 5 7.9e – 5 1.3e – 5 1.2e – 11 

AVF  0.0625 6.1e – 6 6.1e – 6 1.3e – 6 2.6e – 11 

 0.125 0.125 6.1e – 5 6.1e – 5 2.7e – 6 2.3e – 10 

  0.0625 5.2e – 6 5.2e – 6 8.2e – 7 4.9e – 11 

 0.25 0.25 1.1e – 15 1.1e – 15 1.9e – 15 7.1e – 1 

  0.125 1.7e – 15 8.8e – 16 1.3e – 15 3.8e – 1 

LIS  0.0625 4.4e – 16 2.2e – 16 4.4e – 16 1.3e – 1 

 0.125 0.125 9.7e – 15 5.1e – 15 5.1e – 15 3.2e – 1 

  0.0625 2.8e – 15 1.5e – 15 2.2e – 15 1.7e – 1 

Table 3. Errors at time 20T  in solitary wave solution. 

  
1Q  

2Q  
3Q  


E  

 10T  2.67e – 5 2.67e – 5 7.77e – 7 2.97 – 10 

AVF 20T  2.67e – 5 2.67e – 5 6.36e – 5 5.44 – 10 

 10T  1.97e – 14 1.77e – 14 1.99e – 14 5.70 – 02 

LIS 20T  3.46e – 14 3.19e – 14 3.64e – 14 5.07 – 02 
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Figure 2. Solitary wave evolutions. 
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Figure 3. Errors in solitary wave evolutions. 

3.2.2. Creation of new vector soliton  2e  and fusion   :35.0e  

In this example, we present creation of new vector soliton and fusion 

scenarios of three solitary wave solutions. First we choose the wave-wave 

interaction coefficient .2e  The following parameters are used in this test: 

.30,10,21,41,41,3.1,2.1,0.1 302010321321  xxxvvvrrr  

Figure 4 is obtained by the linearly implicit scheme (18) over the spatial 

domain 4040  x  up to 29T  for the values 400M  and .01.0t  

Same results are obtained by means of the AVF scheme (12) which is not 

shown here. From the figure, we see that the collisions takes place between 

the time interval .2015  t  We can see the creation of new vector soliton 

after the collision of three soliton. Figure 5 represents the error of mass 
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conservation and the energy conservation in the collision. From the figure, we 

can see that mass errors of the numerical solutions are very small. Therefore, 

we can say that creation of new vector solitons are not the consequence of 

numerical errors. We note that collision take place about the time .15t  We 

can see that after the collision there is a violation in the preservation of the 

energy by the AVF scheme. The errors in mass conservation by the LIS are 

within the roundoff error of machine. If we chance the wave-wave interaction 

coefficient e and choose 35.0e  we observe the fusion of three soliton in 

Figure 6. Figure 7 shows the errors in the fusion scenario. Figures 5 and 7 

verify the energy conservation of the energy by the AVF scheme (12) and 

mass conservation of the scheme (18) as proven in Theorem 2.2.1. 

 

Figure 4. Creation of vector soliton with .2e  
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4. Conclusion 

In the present paper, two new methods for the numerical solution of the 

coupled nonlinear Schrödinger (3-CNLS) equations are proposed and 

analyzed. The first method is nonlinear and energy conserving. It is proposed 

by using the average vector field method for the time discretization of the 

equation. The second method is linearly implicit and mass conserving. The 

preservation of energy and the mass are illustrated numerically. Wave-wave 

interaction scenarios are investigated and elastic collision, creation of new 

vector soliton and fusion of soliton are observed in numerical simulation. 

Numerical results confirm the excellent long time behavior of the proposed 

schemes by preserving energy and mass. 

 

Figure 5. Errors in creation of vector soliton with .2e  
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Figure 6. Fusion of three soliton with .35.0e  
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Figure 7. Errors in fusion of three soliton with .35.0e  
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