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Abstract 

In this paper, the explicit Runge-Kutta method of order four with Butcher [2] table is used 

to solve the fuzzy initial value problems, the co-efficient of the Runge Kutta method are taken 

from the Butcher’s [2] table. The efficiency and accuracy of the proposed method is examined 

with a numerical example. 

1. Introduction 

In 1972, Chang and Zadeh [3] first presented the Fuzzy functions and its 

derivatives. In continuing, the principle approach was extended to solve the 

Fuzzy differential equations by Dubois and Prade [4]. Kaleva et al., [7] solve 

the fuzzy differential equation with initial values. The numerical method to 

solve the fuzzy initial value problems are introduced by various researchers 

like Ma et al. [8] studied classical Euler method and Abbas bandy et al., [1] 

introduced Taylor method. In this paper, the method of solving the fuzzy 

initial value problem through Explicit Runge Kutta method with Butcher’s 

coefficients is studied. 

 



T. JEYARAJ and D. RAJAN 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021 

664 

2. Preliminaries 

Definition 2.1. Trapezoidal fuzzy number is a four tuples 

 dcbau ,,,  such that ,dcba   with base is the interval  da ,  and 

vertex ,, cxbx   and its membership function is given by  

 
































.,

,1

,

0,0

dxc
xc

xc

cxb

bxa
ab

ax

x

xu  

And have,  

(1) ;0if0  au  (2) ;0if0  bu  

(3) ;0if0  cu  (4) .0if0  du  

Definition 2.2. A fuzzy number   1,0:|~  Ruuu  and satisfies the 

following 

1. u~  is upper semi-continuous. 

2. u~  is fuzzy convex, if         ,,,min1 Ryxyuxuyxu   

.10   

3. u~  is normal, Rx  0  for which   10 xu  

4. Closure of the set   0,  xuRx  is compact. 

Definition 2.3. The parametric form of a fuzzy number u~  is represented 

as a pair  uu ,  of maps      ,10,,  uu  such that 

1.  u  is a left continuous, bounded and monotonic increasing map. 

2.  u  is a left continuous, bounded and monotonic decreasing map  

3.    , uu  for   .1,0  

Definition (Fuzzy Arithmetic) 2.4. Let        ,~
,,~  vvuuu  

  10, v  be arbitrary Fuzzy numbers and let ,Rk   the arithmetic 

operations on fuzzy numbers are defined by 
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         vuvuvu ,
~~  

         vuvuvu ,
~~  

                  ,,,,min
~~  vuvuvuvuvu  

                 vuvuvuvu ,,,max  

    

    












.0if,,

0if,,

~

CuCuC

CuCuC

uC  

Let   ,0~~: 


 RuuD  

              ,,maxsup, 1,0   vuvuvuD  be Hausdorff 

distance between fuzzy numbers, where          .~
,~  vvvuuu  

The following properties are well known: 

    ,~,,,,, uwvuvuDwvwuD   

    ,~,,,,, uvuRkvuDkkvkuD   

      .~,,,,,,, uewvuevDwuDewvuD   

And  Du ,~  is a complete metric space. 

Definition 2.5. Let F be the set of all fuzzy numbers, the -level set of 

fuzzy number ,10,~  Fu  is defined by       .1,0 


ifxuRxu  

The -level set       


uuu ,  is closed and bounded. 

Lemma 2.1 [8]. If the sequence of positive numbers  
N

nnW
0

 satisfy 

,10,1  NnBWAW nn  

for the given .10,
1

1
,, 0 







Nn

A

A
BWAWZBA

n
n

n  

Lemma 2.2 [8]. If the sequence of positive numbers    
N

nn

N

nn VW
00

,


 

satisfy 

  ,,max1 BVWAWW nnnn   

  ,,max1 BVWAVV nnnn   
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for the given ,0,,, NnVWUZBA nnn 
  then 

,0,
1

1
0 Nn

A

A
BUAU

n
n

n 



  where AA 21   and .2 BB   

Theorem 2.1 [8]. Let  vutF ,,  and  vutG ,,  be in  KC
l  and its 

partial derivatives are bounded above K then, for random fixed ,10,   

the approximate solutions   ;1nty  and   ;1nty  meet the exact solutions 

 ;tY  and  ;tY  regularly in t. 

Theorem 2.2 [8]. Let  vutF ,,  and  vutG ,,  be in  KC
l  and its 

partial derivatives are bounded above ,2, lLhK   then, for random fixed 

,10,   the solutions  ;n
i

ty  and   ,2,1,;  ity n
i  not diverge to 

the algebraic solutions  ;nty  and  ;nty  in ,0 Nn ttt   when .i  

3. Fuzzy Initial Value Problems (FIVP) 

Consider the fuzzy initial value differential equation has the form: 

      

 










,

,;,

00

0

yty

ltttytfty

 (1) 

here y is a fuzzy map in  ytft ,,  is a fuzzy map of   and fuzzy variable y, the 

derivative of y is denoted by y   and   00 yty   is a fuzzy number (in 

triangular shaped). 

The exact solution of the problem in (1)        


;,; tYtYtY  be 

approximated by some         .;,; 


tytyty  

         1,0,;,; 000 


tytyty  

we write       ytfytfytf ,,,,   and         .,,,,,,, yytGytfyytFytf   

Because of  ytfy ,  we have 

        ,,;,;, tytytFtytf  
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        ,,;,;, tytytGtytf  

The extension principle gives the membership map as 

            Rstfstystytf  ,,|sup,  

so fuzzy number   ., tytf  From this it follows that 

             ,1,0,;,,;,,  tytftytftytf
r

 

where 

         


 tyuutftytf |,min;,  

          .|,max;,


 tyuutftytf  

Theorem 3.1 [8]. If a function f satisfy the following  

      ,,,0,,,, Ruutuutgutfutf   

where 
 RRg :  is a continuous function and   ,tg  is increasing, 

the initial value problem        ,0,, 0uututgtu   has a solution on 
R  for 

.00 u  Then the FIVP (1) has a unique fuzzy solution. 

4. Explicit Runge-Kutta Method 

The family of explicit Runge-Kutta methods is a generalization of the 

Runge Kutta method. It is given by 




 

s

i

iinn kbhyy

1

1  

where, 

 ,,1 nn ytfk   

  ,, 12122 kahyhctfk nn   

  ,, 23213133 kakahyhctfk nn   

  

  ., 112211  sssssnsns kakakahyhctfk   
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The integer s (the number of stages), and the coefficients 

   sibsija iij ,,2,1,1   and  .,,3,2 sic i   The matrix  ija  is 

called the Runge Kutta matrix, while the ib  and ic  are known as the weights 

and the nodes. These data are usually arranged in a mnemonic device, known 

as a Butcher tableau [2]: 

0      

2c  21a      

3c  31a  32a     

        

        

sc  1sa  2sa    
1, ssa   

 1b  2b    
1sb  sb  

The Runge-Kutta method is consistent if 





1

1
.,,3,2,

i

j iij sica   

There are also accompanying requirements if one requires the method to 

have a certain order p, meaning that the local truncation error is  ,
1p

hO  

these can be derived from the definition of the truncation error itself.  

In general, if an explicit s-stage Runge-Kutta method has order p, then it 

can be proven that the number of stages must satisfy ,ps   and if ,5p  

then .1 ps  However, it is not known whether these bounds are sharp in 

all cases; for example, all known methods of order 8 have at least 11 stages, 

though it is possible that there are methods with fewer stages. Indeed, it is an 

open problem what the precise minimum number of stages 8 is for an explicit 

Runge-Kutta method to have order p in those cases where no methods have 

yet been discovered that satisfy the bounds above with equality. Some values 

which are known are: 

p 1 2 3 4 5 6 7 8 

mins 1 2 3 4 6 7 9 11 
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The provable bounds above then imply that we cannot find methods of 

orders 6,,2,1 p  that require fewer stages than the methods we already 

know for these orders. However, it is conceivable that we might find a method 

of order 7p  that has only 8 stages, whereas the only ones known today 

have at least 9 stages as shown in the table. 

A slight variation of “the” Runge-Kutta method is also due to Kutta in 

1901 and is called the 3/8-rule. The primary advantage this method has is 

that almost all of the error coefficients are smaller than in the popular 

method, but it requires slightly more FLOPs (floating-point operations) per 

time step. Its Butcher [3] tableau is 

0     

3

1
 

3

1
 

   

3

2
 

3

1
 

1   

1 1 – 1 1  

 

8

1
 

8

3
 

8

3
 

8

1
 

5. Explicit Runge-Kutta Fourth Order 

The explicit Runge Kutta methods is to prompt the variance among the 

standards of y at 1nt  and nt  as   
s

i iinn kbhyy
01 .  Where sb i '  are 

persistent for all i and  





1

1
,

i

j jijnini khychtfk  with nn tth  1  

and ,00 ty   

 ii ytfk ,1   

  12122 , khychtfk ii   

  23213133 , kkhychtfk ii   

  ., 34324214144 kkkhychtfk ii   
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From Butcher table, 

01 c  

3

1
2 c  

3

2
3 c  

14 c  01   

8

1
1 b  

8

3
2 b  

8

3
3 b  

8

1
4 b  

143   

3

1
21   

3

1
31


  

132   141   142   

Hence,  

    ,
8

3

8

1
32411 






 kkkkhyy nn  

 ,,1 ii ytfk   











3
,

3

1
2

hk
y

h
tfk ii  




















 213

3

1
,

3

2
kkhy

h
tfk ii  

  ., 3214 kkkhyhtfk ii   

6. Explicit Runge-Kutta Method for Solving Fuzzy Initial Value 

Problem 

The exact solution of the problem in (1)        


;,; tYtYtY  be 

estimated by some         .;,; 


tytyty  The grating points are 

.0;, 01
0

Nihitt
N

tT
h 


   

Now, by the equations (3) and (4), we define 

   







 32411

8

3

8

1
kkkkhyy nn  

          



 ;,;,

8
;; 411 tytktytk

h
tYtY nn  

      



 ;,;,

8

3
32 tytktytk

h
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where 

     ;,;,1 tYtYtFk n  

     
3

;,
3

;,
3

11
2

hk
tY

hk
tY

h
tFk n   

    






























 2

1
2

1
3

3
;,

3
;,

3

2
k

k
tYk

k
htY

h
tFk n  

        3213214 ;,;, kkkhtYkkkhtYhtFk n   

And, 

          



 ;,;,

8
;; 411 tytktytk

h
tYtY nn  

      



 ;,;,

8

3
32 tytktytk

h
 

where 

     ;,;,1 tYtYtGk n  

    









3
;,

3
;,

3

11
2

hk
tY

hk
tY

h
tGk n  

    






























 2

1
2

1
3

3
;,

3
;,

3

2
k

k
htYk

k
htY

h
tGk n  

        .;,;, 3213214 kkkhtYkkkhtYhtGk n   

Also we have 

          



 ;,;,

8
;; 411 tytktytk

h
tyty nn  

      



 ;,;,

8

3
32 tytktytk

h
 

where 

     ;,;,1 tytytFk n  

    









3
;,

3
;,

3

11
2

hk
ty

hk
ty

h
tFk n  
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    






























 2

1
2

1
3

3
;,

3
;,

3

2
k

k
htyk

k
hty

h
tFk n  

        3213214 ;,;, kkkhtykkkhtyhtFk n   

and, 

          



 ;,;,

8
;; 411 tytktytk

h
tyty nn  

      



 ;,;,

8

3
32 tytktytk

h
 

Where 

     ;,;,1 tytytGk n  

     
3

;,
3

;,
3

11
2

hk
ty

hk
ty

h
tGk n   

    






























 2

1
2

1
3

3
;,

3
;,

3

2
k

k
htyk

k
hty

h
tGk n  

        .;,;, 3213214 kkkhtykkkhtyhtGk n   

Define, 

                







 ;,;,

8
;,;,

8
,, 3241 tytktytk

h
tytktytk

h
tytF  

                







 ;,;,

8

3
;,;,

8
,, 3241 tytktytk

h
tytktytk

h
tytG  

Thus,        


;,; nnn tYtYtY  and        


;,; nnn tytyty  are 

the exact and approximate solutions at .0, Nntn   The solution at grid 

points, mttttl N  210  and .1 nn tt
N

lm
h 


   By above 

Equations, let        ;,;;1 nnnn tYtFtYtY  and     ;;1 nn tYtY  

   ;, nn tYtG  and        ;,;;1 nnnn tytFtyty    ;1nty  

    .;,;  nnn tytGty  
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By Lemma 2.1 and Lemma 2.2, 

  ,lim tyn  and    .,,lim  tYtyh  Let  vutF ,,  and 

 vutG ,,  be found by replacing     vuty ,


 

           







 vutkvutk

h
vutkvutk

h
vutF ,,,,

8

3
,,,,

8
,, 3241  

            .,,,,
8

3
,,,,

8
,, 3241 






 vutkvutk

h
vutkvutk

h
vutG  

The territory where F and G are well-defined, therefore 

   .,,0|,, vuvTtvutK   

By Theorem 2.1, the approximate solutions  rty ;  and  rty ;  converges to 

the precise solution  rtY ;  and  rtY ;  consistently in t.  

7. Numerical Example 

Consider the FIVP,  

          .10,1.01.1,13.08.00,1,0,  yttyty  

Now,        
tt

etytYetytY  ;;,;;  are the exact solutions, i.e., 

            
tt

etyetytYtYtY  ;,;;,;,  

       .10,1.01.1,13.08.0, 
tt

eetY  

At ,1t  we get        .10,1.01.1,13.08.0,1  eeY  

 0 0.2 0.4 0.6 0.8 1 

Exact Solution  ;1Y  2.175 2.245 2.315 2.387 2.457 2.528 

 ;1Y  2.990 2.936 2.881 2.827 2.773 2.718 
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8. Conclusion 

In this paper, the explicit Runge-Kutta method is used to solve the fuzzy 

initial valued problem, and used the Butcher table for the coefficient of the 

Runge Kutta formula. A numerical example is also discussed. 
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