

EXPLICIT RUNGE KUTTA METHOD IN SOLVING FUZZY INITIAL VALUE PROBLEM

T. JEYARAJ and D. RAJAN

PG and Research Department of Mathematics T.B.M.L. College (Affiliated to Bharathidasan University) Porayar 609307, India E-mail: jrajkadali@gmail.com dan_rajan@rediffmail.com

Abstract

In this paper, the explicit Runge-Kutta method of order four with Butcher [2] table is used to solve the fuzzy initial value problems, the co-efficient of the Runge Kutta method are taken from the Butcher's [2] table. The efficiency and accuracy of the proposed method is examined with a numerical example.

1. Introduction

In 1972, Chang and Zadeh [3] first presented the Fuzzy functions and its derivatives. In continuing, the principle approach was extended to solve the Fuzzy differential equations by Dubois and Prade [4]. Kaleva et al., [7] solve the fuzzy differential equation with initial values. The numerical method to solve the fuzzy initial value problems are introduced by various researchers like Ma et al. [8] studied classical Euler method and Abbas bandy et al., [1] introduced Taylor method. In this paper, the method of solving the fuzzy initial value problem through Explicit Runge Kutta method with Butcher's coefficients is studied.

²⁰¹⁰ Mathematics Subject Classification: 03E72, 08A72.

Keywords: fuzzy initial value problem, explicit Runge-Kutta method, Butcher's table, metric space, trapezoidal fuzzy number.

Received January 24, 2020; Accepted May 13, 2020

2. Preliminaries

Definition 2.1. Trapezoidal fuzzy number is a four tuples u = (a, b, c, d) such that a < b < c < d, with base is the interval [a, d] and vertex x = b, x = c, and its membership function is given by

$$u(x) = \begin{cases} 0, & x < 0 \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & b \le x \le c \\ \frac{c-x}{c-x}, & c \le x \le d. \end{cases}$$

And have,

(1)
$$u > 0$$
 if $a > 0$; (2) $u \ge 0$ if $b > 0$;
(3) $u > 0$ if $c > 0$; (4) $u > 0$ if $d > 0$.

Definition 2.2. A fuzzy number $\tilde{u} = \{u \mid u : R \rightarrow [0, 1]\}$ and satisfies the following

1. \tilde{u} is upper semi-continuous.

2. \tilde{u} is fuzzy convex, if $u(\lambda x + (1 - \lambda)y) \ge \min \{u(x), u(y)\} \forall x, y \in R, 0 \le \lambda \le 1.$

3. \tilde{u} is normal, $\exists x_0 \in R$ for which $u(x_0) = 1$

4. Closure of the set $\{x \in R, u(x) > 0\}$ is compact.

Definition 2.3. The parametric form of a fuzzy number \tilde{u} is represented as a pair $(\underline{u}, \overline{u})$ of maps $(\underline{u}(\delta), \overline{u}(\delta)), 0 \le \delta \le 1$, such that

1. $u(\delta)$ is a left continuous, bounded and monotonic increasing map.

2. $\overline{u}(\delta)$ is a left continuous, bounded and monotonic decreasing map

3. $u(\delta) \leq \overline{u}(\delta)$, for $\delta \in (0, 1]$.

Definition (Fuzzy Arithmetic) 2.4. Let $\tilde{u} = (\underline{u}(\delta), \overline{u}(\delta)), \tilde{v} = (v(\delta), \overline{v}(\delta)), 0 \le \delta \le 1$ be arbitrary Fuzzy numbers and let $k \in R$, the arithmetic operations on fuzzy numbers are defined by

$$\widetilde{u} + \widetilde{v} = (\underline{u}(\delta) + \underline{v}(\delta), \ \overline{u}(\delta) + \overline{v}(\delta))$$

$$\widetilde{u} - \widetilde{v} = (\underline{u}(\delta) + \overline{v}(\delta), \ \overline{u}(\delta) + \underline{v}(\delta))$$

 $\widetilde{u} \cdot \widetilde{v} = (\min \{\underline{u}(\delta)\underline{v}(\delta), \underline{u}(\delta)\overline{v}(\delta), \overline{u}(\delta)\underline{v}(\delta), \overline{u}(\delta)\overline{v}(\delta)\},$

 $\max \{\underline{u}(\delta)\underline{v}(\delta), \underline{u}(\delta)\overline{v}(\delta), \overline{u}(\delta)\underline{v}(\delta), \overline{u}(\delta)\overline{v}(\delta)\}\}$

$$C \,\widetilde{u} = \begin{cases} (C \,\overline{u} \,(\delta), C \,\underline{u} \,(\delta)), & \text{if } C \ge 0 \\ \\ (C \,\underline{u} \,(\delta), C \,\overline{u} \,(\delta)), & \text{if } C < 0. \end{cases}$$

Let $D : \widetilde{u} \times \widetilde{u} \to R^+ \cup \{0\},\$

 $D(u, v) = \sup_{\delta \in [0, 1]} \max \{ | \underline{u}(\delta) - \underline{v}(\delta) |, | \overline{u}(\delta) - \overline{v}(\delta) | \}, \text{ be Hausdorff}$ distance between fuzzy numbers, where $\widetilde{u} = (u(\delta) - \overline{u}(\delta)), \ \widetilde{v} = (v(\delta) - \overline{v}(\delta)).$

The following properties are well known:

$$D(u + w, v + w) = D(u, v), \forall u, v, w \in \tilde{u},$$
$$D(ku, kv) = |k| D(u, v), \forall k \in R, u, v \in \tilde{u},$$
$$(u + v, w + e) = D(u, w) + D(v, e), \forall u, v, w, e \in \tilde{u}$$

And (\tilde{u}, D) is a complete metric space.

D

Definition 2.5. Let *F* be the set of all fuzzy numbers, the δ -level set of fuzzy number $\tilde{u} \in F$, $0 \le \delta \le 1$, is defined by $[u]_{\delta} = \{x \in R / u(x) \ge \delta \text{ if } 0 \le \delta, 1\}$. The δ -level set $[u]_{\delta} = (\underline{u}(\delta), \overline{u}(\delta))$ is closed and bounded.

Lemma 2.1 [8]. If the sequence of positive numbers $\{W_n\}_{n=0}^N$ satisfy

$$|W_{n+1}| \le A |W_n| + B, 0 \le n \le N - 1,$$

for the given $A, B \in Z^+, |W_n| \le A^n |W_0| + B \frac{A^n - 1}{A - 1}, 0 \le n \le N - 1.$

Lemma 2.2 [8]. If the sequence of positive numbers $\{W_n\}_{n=0}^N, \{V_n\}_{n=0}^N$ satisfy

$$\left| \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|} W_{n+1} & \leq & W_n & + A \max & \{ & W_n & , & V_n & \} + B, \\ \hline & & V_{n+1} & \leq & V_n & + A \max & \{ & W_n & , & V_n & \} + B, \\ \end{array} \right.$$

for the given
$$A, B \in Z^+, U_n = |W_n| + |V_n|, 0 \le n \le N$$
, then
 $U_n \le \overline{A^n}U_0 + \overline{B} \cdot \frac{\overline{A^n} - 1}{\overline{A} - 1}, 0 \le n \le N$, where $\overline{A} = 1 + 2A$ and $\overline{B} = 2B$.

Theorem 2.1 [8]. Let F(t, u, v) and G(t, u, v) be in $C^{l}(K)$ and its partial derivatives are bounded above K then, for random fixed $\delta, 0 \leq \delta \leq 1$, the approximate solutions $\underline{y}(t_{n+1}; \delta)$ and $\overline{y}(t_{n+1}; \delta)$ meet the exact solutions $\underline{Y}(t; \delta)$ and $\overline{Y}(t; \delta)$ regularly in t.

Theorem 2.2 [8]. Let F(t, u, v) and G(t, u, v) be in $C^{l}(K)$ and its partial derivatives are bounded above K, 2Lh < l, then, for random fixed $\delta, 0 \le \delta \le 1$, the solutions $\underline{y}^{i}(t_{n}; \delta)$ and $\overline{y}^{i}(t_{n}; \delta)$, i = 1, 2, ... not diverge to the algebraic solutions $\underline{y}(t_{n}; \delta)$ and $\overline{y}(t_{n}; \delta)$ in $t_{0} \le t_{n} \le t_{N}$, when $i \to \infty$.

3. Fuzzy Initial Value Problems (FIVP)

Consider the fuzzy initial value differential equation has the form:

$$\begin{cases} y'(t) = f(t, y(t)); t \in [t_0, l] \\ y(t_0) = y_0, \end{cases}$$
(1)

here y is a fuzzy map in t, f(t, y) is a fuzzy map of t and fuzzy variable y, the derivative of y is denoted by y' and $y(t_0) = y_0$ is a fuzzy number (in triangular shaped).

The exact solution of the problem in (1) $[Y(t)]_{\delta} = [\underline{Y}(t; \delta), \overline{Y}(t; \delta)]$ be approximated by some $[y(t)]_{\delta} = [\underline{y}(t; \delta), \overline{y}(t; \delta)]$.

$$\left[y(t_0)\right]_{\delta} = \left[y(t_0; \delta), \ \overline{y}(t_0; \delta)\right], \ \delta \in (0, 1]$$

we write $f(t, y) = [\underline{f}(t, y), \overline{f}(t, y)]$ and $\underline{f}(t, y) = F[t, y, \overline{y}], \overline{f}(t, y) = G[t, y, \overline{y}].$

Because of y' = f(t, y) we have

$$f(t, y(t); \delta) = F[t, y(t; \delta), \overline{y}(t, \delta)]$$

$$f(t, y(t); \delta) = G[t, y(t; \delta), \overline{y}(t, \delta)]$$

The extension principle gives the membership map as

 $f(t, y(t))(s) = \sup \{y(t)(\tau) | s = f(t, \tau)\}, s \in R$

so fuzzy number f(t, y(t)). From this it follows that

$$[f(t, y(t))]_{r} = [\underline{f}(t, y(t); \delta), f(t, y(t); \delta)], \delta \in (0, 1],$$

where

$$\underline{f}(t, y(t); \delta) = \min \{f(t, u) | u \in [y(t)]_{\delta}\}$$
$$\overline{f}(t, y(t); \delta) = \max \{f(t, u) | u \in [y(t)]_{\delta}\}.$$

Theorem 3.1 [8]. If a function f satisfy the following

$$|f(t, u) - f(t, u')| \le g(t, |u - u'|), t \ge 0, u, u' \in R,$$

where $g : R^+ \to R^+$ is a continuous function and $\delta \to g(t, \delta)$ is increasing, the initial value problem $u'(t) = g(t, u(t)), u(0) = u_0$, has a solution on R^+ for $u_0 = 0$. Then the FIVP (1) has a unique fuzzy solution.

4. Explicit Runge-Kutta Method

The family of explicit Runge-Kutta methods is a generalization of the Runge Kutta method. It is given by

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$$

where,
$$k_1 = f(t_n, y_n),$$
$$k_2 = f(t_n + hc_2, y_n + h(a_{21} k_1)),$$
$$k_3 = f(t_n + hc_3, y_n + h(a_{31} k_1 + a_{32} k_2)),$$
$$\vdots$$
$$k_s = f(t_n + hc_s, y_n + h(a_{s1} k_1 + a_{s2} k_2 + \dots + a_{ss-1} k_{s-1})).$$

The integer *s* (the number of stages), and the coefficients a_{ij} ($1 \le j < i \le s$), b_i (i = 1, 2, ..., s) and c_i (i = 2, 3, ..., s). The matrix $[a_{ij}]$ is called the Runge Kutta matrix, while the b_i and c_i are known as the weights and the nodes. These data are usually arranged in a mnemonic device, known as a Butcher tableau [2]:

	b_1	b_2	 b_{s-1}	b_s
<i>c</i> _{<i>s</i>}	a_{s1}	a_{s2}	 $a_{s,s-1}$	
:	÷			
÷	÷			
c_3	a_{31}	a_{32}		
c_2	a_{21}			
0				

The Runge-Kutta method is consistent if $\sum_{j=1}^{i-1} a_{ij} = c_i, i = 2, 3, ..., s$.

There are also accompanying requirements if one requires the method to have a certain order p, meaning that the local truncation error is $O(h^{p+1})$, these can be derived from the definition of the truncation error itself.

In general, if an explicit *s*-stage Runge-Kutta method has order p, then it can be proven that the number of stages must satisfy $s \ge p$, and if $p \ge 5$, then $s \ge p + 1$. However, it is not known whether these bounds are sharp in all cases; for example, all known methods of order 8 have at least 11 stages, though it is possible that there are methods with fewer stages. Indeed, it is an open problem what the precise minimum number of stages 8 is for an explicit Runge-Kutta method to have order p in those cases where no methods have yet been discovered that satisfy the bounds above with equality. Some values which are known are:

p	1	2	3	4	5	6	7	8
mins	1	2	3	4	6	7	9	11

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021

The provable bounds above then imply that we cannot find methods of orders p = 1, 2, ..., 6 that require fewer stages than the methods we already know for these orders. However, it is conceivable that we might find a method of order p = 7 that has only 8 stages, whereas the only ones known today have at least 9 stages as shown in the table.

A slight variation of "the" Runge-Kutta method is also due to Kutta in 1901 and is called the 3/8-rule. The primary advantage this method has is that almost all of the error coefficients are smaller than in the popular method, but it requires slightly more FLOPs (floating-point operations) per time step. Its Butcher [3] tableau is

0				
$\frac{1}{3}$	$\frac{1}{3}$			
$\frac{2}{3}$	$\frac{-1}{3}$	1		
1	1	- 1	1	
	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

5. Explicit Runge-Kutta Fourth Order

The explicit Runge Kutta methods is to prompt the variance among the standards of y at t_{n+1} and t_n as $y_{n+1} - y_n = h \sum_{i=0}^{s} b_i k_i$. Where b_i 's are persistent for all *i* and $k_i = f(t_n + hc_i, y_n + h \sum_{j=1}^{i-1} \lambda_{ij} k_j)$ with $h = t_{n+1} - t_n$ and $y_0 = t_0$,

$$\begin{aligned} k_1 &= f(t_i, y_i) \\ k_2 &= f(t_i + hc_2, y_i + h(\lambda_{21}k_1)) \\ k_3 &= f(t_i + hc_3, y_i + h(\lambda_{31}k_1 + \lambda_{32}k_2)) \\ k_4 &= f(t_i + hc_4, y_i + h(\lambda_{41}k_1 + \lambda_{42}k_2 + \lambda_{43}k_3)). \end{aligned}$$

From Butcher table,

$c_1 = 0$	$c_2 = \frac{1}{3}$	$c_3 = \frac{2}{3}$	$c_4 = 1$	$\lambda_1 = 0$	
$b_1 = \frac{1}{8}$	$b_2 = \frac{3}{8}$	$b_3 = \frac{3}{8}$	$b_4 = \frac{1}{8}$	$\lambda_{43} = 1$	
$\lambda_{21} = \frac{1}{3}$	$\lambda_{31} = \frac{-1}{3}$	$\lambda_{32} = 1$	$\lambda_{41} = 1$	λ_{42} = -1	

Hence,

$$\begin{split} y_{n+1} &= y_n + h \bigg[\frac{1}{8} (k_1 + k_4) + \frac{3}{8} (k_2 + k_3) \bigg], \\ k_1 &= f(t_i, y_i), \\ k_2 &= f \bigg(t_i + \frac{h}{3}, y_i + \frac{hk_1}{3} \bigg) \\ k_3 &= f \bigg(t_i + \frac{2h}{3}, y_i + h \bigg(\frac{-1}{3} k_1 + k_2 \bigg) \bigg) \\ k_4 &= f(t_i + h, y_i + h (k_1 - k_2 + k_3)). \end{split}$$

6. Explicit Runge-Kutta Method for Solving Fuzzy Initial Value Problem

The exact solution of the problem in (1) $[Y(t)]_{\delta} = [\underline{Y}(t; \delta), \overline{Y}(t; \delta)]$ be estimated by some $[y(t)]_{\delta} = [\underline{y}(t; \delta), \overline{y}(t; \delta)]$. The grating points are

$$h = \frac{T - t_0}{N}, t_1 = t_0 + i h; 0 \le i \le N.$$

Now, by the equations (3) and (4), we define

$$\begin{split} y_{n+1} &= y_n + h \bigg[\frac{1}{8} (k_1 + k_4) + \frac{3}{8} (k_2 + k_3) \bigg] \\ \underline{Y}(t_{n+1}; \, \delta) &= \underline{Y}(t_n; \, \delta) + \bigg[\frac{h}{8} (\underline{k_1}(t, \, y(t; \, \delta)) + \underline{k_4}(t, \, y(t; \, \delta))) \\ &+ \frac{3h}{8} (\underline{k_2}(t, \, y(t; \, \delta)) + \underline{k_3}(t, \, y(t; \, \delta))) \bigg] \end{split}$$

where

$$\begin{split} k_{1} &= F\left(t_{n}, \underline{Y}(t; \delta), \overline{Y}(t; \delta)\right) \\ k_{2} &= F\left(t_{n} + \frac{h}{3}, \underline{Y}(t; \delta) + \frac{hk_{1}}{3}, \overline{Y}(t; \delta) + \frac{hk_{1}}{3}\right) \\ k_{3} &= F\left(t_{n} + \frac{2h}{3}, \underline{Y}(t; \delta) + h\left(\frac{-k_{1}}{3} + k_{2}\right), \overline{Y}(t; \delta) + \left(\frac{-k_{1}}{3} + k_{2}\right)\right) \\ k_{4} &= F\left(t_{n} + h, \underline{Y}(t; \delta) + h(k_{1} - k_{2} + k_{3}), \overline{Y}(t; \delta) + h(k_{1} - k_{2} + k_{3})\right) \end{split}$$

And,

$$\begin{split} \overline{Y}(t_{n+1};\,\delta) &= \overline{Y}(t_n;\,\delta) + \left[\frac{h}{8}(\overline{k_1}(t,\,y(t;\,\delta)) + \overline{k_4}(t,\,y(t;\,\delta))) \\ &+ \frac{3h}{8}(\overline{k_2}(t,\,y(t;\,\delta)) + \overline{k_3}(t,\,y(t;\,\delta)))\right] \end{split}$$

where

$$\begin{split} k_1 &= G\left(t_n, \ \underline{Y}(t; \ \delta), \ \overline{Y}(t; \ \delta)\right) \\ k_2 &= G\left(t_n + \frac{h}{3}, \ \underline{Y}(t; \ \delta) + \frac{hk_1}{3}, \ \overline{Y}(t; \ \delta) + \frac{hk_1}{3}\right) \\ k_3 &= G\left(t_n + \frac{2h}{3}, \ \underline{Y}(t; \ \delta) + h\left(\frac{-k_1}{3} + k_2\right), \ \overline{Y}(t; \ \delta) + h\left(\frac{-k_1}{3} + k_2\right)\right) \\ k_4 &= G\left(t_n + h, \ \underline{Y}(t; \ \delta) + h\left(k_1 - k_2 + k_3\right), \ \overline{Y}(t; \ \delta) + h\left(k_1 - k_2 + k_3\right)\right). \end{split}$$

Also we have

$$\underline{y}(t_{n+1}; \delta) = \underline{y}(t_n; \delta) + \left[\frac{h}{8}(\underline{k_1}(t, y(t; \delta)) + \underline{k_4}(t, y(t; \delta))) + \frac{3h}{8}(\underline{k_2}(t, y(t; \delta)) + \underline{k_3}(t, y(t; \delta)))\right]$$

where

$$k_1 = F(t_n, \underline{y}(t; \delta), \overline{y}(t; \delta))$$

$$k_2 = F\left(t_n + \frac{h}{3}, \underline{y}(t; \delta) + \frac{hk_1}{3}, \overline{y}(t; \delta) + \frac{hk_1}{3}\right)$$

$$\begin{split} k_3 &= F\left(t_n + \frac{2h}{3}, \ \underline{y}(t; \ \delta) + h\left(\frac{-k_1}{3} + k_2\right), \ \overline{y}(t; \ \delta) + h\left(\frac{-k_1}{3} + k_2\right)\right) \\ k_4 &= F(t_n + h, \ \underline{y}(t; \ \delta) + h(k_1 - k_2 + k_3), \ \overline{y}(t; \ \delta) + h(k_1 - k_2 + k_3)) \end{split}$$

and,

$$\begin{split} \overline{y}(t_{n+1}; \ \delta) &= \ \overline{y}(t_n; \ \delta) + \left[\frac{h}{8}\left(\overline{k_1}(t, \ y(t; \ \delta)) + \overline{k_4}(t, \ y(t; \ \delta))\right) \\ &+ \frac{3h}{8}\left(\overline{k_2}(t, \ y(t; \ \delta)) + \overline{k_3}(t, \ y(t; \ \delta))\right)\right] \end{split}$$

Where

$$\begin{split} k_1 &= G\left(t_n \,,\, \underline{y}\left(t;\,\delta\right),\, \overline{y}(t;\,\delta)\right) \\ k_2 &= G\left(t_n \,+\, \frac{h}{3} \,,\, \underline{y}\left(t;\,\delta\right) + \frac{hk_1}{3} \,,\, \overline{y}(t;\,\delta) + \frac{hk_1}{3}\right) \\ k_3 &= G\left(t_n \,+\, \frac{2h}{3} \,,\, \underline{y}\left(t;\,\delta\right) + h\left(\frac{-k_1}{3} \,+\, k_2\right),\, \overline{y}(t;\,\delta) + h\left(\frac{-k_1}{3} \,+\, k_2\right)\right) \\ k_4 &= G\left(t_n \,+\, h \,,\, \underline{y}\left(t;\,\delta\right) + h\left(k_1 \,-\, k_2 \,+\, k_3\right),\, \overline{y}(t;\,\delta) + h\left(k_1 \,-\, k_2 \,+\, k_3\right)). \end{split}$$

Define,

$$F(t, y(t, \delta)) = \left[\frac{h}{8}(\underline{k_1}(t, y(t; \delta)) + \underline{k_4}(t, y(t; \delta))) + \frac{h}{8}(\underline{k_2}(t, y(t; \delta)) + \underline{k_3}(t, y(t; \delta)))\right]$$
$$G(t, y(t, \delta)) = \left[\frac{h}{8}(\overline{k_1}(t, y(t; \delta)) + \overline{k_4}(t, y(t; \delta))) + \frac{3h}{8}(\overline{k_2}(t, y(t; \delta)) + \overline{k_3}(t, y(t; \delta)))\right]$$

Thus, $[Y(t_n)]_{\delta} = [\underline{Y}(t_n; \delta), \overline{Y}(t_n; \delta)]$ and $[y(t_n)]_{\delta} = [\underline{y}(t_n; \delta), \overline{y}(t_n; \delta)]$ are the exact and approximate solutions at $t_n, 0 \le n \le N$. The solution at grid points, $l = t_0 \le t_1 \le t_2 \le \dots \le t_N = m$ and $h = \frac{m-l}{N} = t_{n+1} - t_n$. By above Equations, let $\underline{Y}(t_{n+1}; \delta) = \underline{Y}(t_n; \delta) + F[t_n, Y(t_n; \delta)]$ and $\overline{Y}(t_{n+1}; \delta) = \overline{Y}(t_n; \delta)$ $+ G[t_n, Y(t_n; \delta)]$ and $\underline{y}(t_{n+1}; \delta) = \underline{y}(t_n; \delta) + F[t_n, y(t_n; \delta)]$ $\overline{y}(t_{n+1}; \delta)$ $= \overline{y}(t_n; \delta) + G[t_n, y(t_n; \delta)].$

By Lemma 2.1 and Lemma 2.2,

 $\lim_{n \to \infty} \underline{y}(t, \delta) \text{ and } \lim_{h \to \infty} \overline{y}(t, \delta) = \overline{Y}(t, \delta). \text{ Let } F(t, u, v) \text{ and}$ G(t, u, v) be found by replacing $[y(t)]_{\delta} = [u, v]$

$$\begin{split} F\left(t,\,\,u,\,\,v\right) &= \left[\frac{h}{8}\left(\underline{k_{1}}\left(t,\,\,u,\,\,v\right) + \,\underline{k_{4}}\left(t,\,\,u,\,\,v\right)\right) + \,\frac{3h}{8}\left(\underline{k_{2}}\left(t,\,\,u,\,\,v\right) + \,\underline{k_{3}}\left(t,\,\,u,\,\,v\right)\right)\right] \\ G\left(t,\,\,u,\,\,v\right) &= \left[\frac{h}{8}\left(\overline{k_{1}}\left(t,\,\,u,\,\,v\right) + \,\overline{k_{4}}\left(t,\,\,u,\,\,v\right)\right) + \,\frac{3h}{8}\left(\overline{k_{2}}\left(t,\,\,u,\,\,v\right) + \,\overline{k_{3}}\left(t,\,\,u,\,\,v\right)\right)\right]. \end{split}$$

The territory where F and G are well-defined, therefore

$$K = \{(t, u, v) \mid 0 \le t \le T, -\infty < v < \infty, -\infty < u \le v\}.$$

By Theorem 2.1, the approximate solutions $\underline{y}(t; r)$ and $\overline{y}(t; r)$ converges to the precise solution $\underline{Y}(t; r)$ and $\overline{Y}(t; r)$ consistently in *t*.

7. Numerical Example

Consider the FIVP,

$$y'(t) = y(t), t \in [0, 1], y(0) = (0.8 + 0.13\delta, 1.1 - 0.1\delta), 0 < \delta \le 1.$$

Now, $\underline{Y}(t; \delta) = \underline{y}(t; \delta)e^t$, $\overline{Y}(t; \delta) = \overline{y}(t; \delta)e^t$ are the exact solutions, i.e., $Y(t, \delta) = [\underline{Y}(t; \delta), \overline{Y}(t; \delta)] = [y(t; \delta)e^t, \overline{y}(t; \delta)e^t]$

$$Y(t, \delta) = [(0.8 + 0.13 \delta)e^{t}, (1.1 - 0.1\delta)e^{t}], 0 < \delta \le 1.$$

At
$$t = 1$$
, we get $Y(1, \delta) = [(0.8 + 0.13 \delta)e, (1.1 - 0.1\delta)e], 0 < \delta \le 1$.

δ		0	0.2	0.4	0.6	0.8	1
Exact Solution	$\underline{Y}(1; \delta)$	2.175	2.245	2.315	2.387	2.457	2.528
	$\overline{Y}(1; \delta)$	2.990	2.936	2.881	2.827	2.773	2.718

8. Conclusion

In this paper, the explicit Runge-Kutta method is used to solve the fuzzy initial valued problem, and used the Butcher table for the coefficient of the Runge Kutta formula. A numerical example is also discussed.

References

- S. Abbasbandy and T AllahViranloo, Numerical Solution of fuzzy differential equations by Taylor method, Journal of Computational Methods in Applied Mathematics 2 (2002), 113-124.
- [2] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations Runge-Kutta and General Linear Methods, John Wiley & Sons Ltd., New York, 1987.
- [3] S. L.Chang and L. A. Zadeh, On Fuzzy Mapping and Control, IEEE Trans. Systems Man Cyber Net. 2 (1972), 30-34.
- [4] D. Dubois and H. Prade, Towards fuzzy differential calculus: Part 3, Differentiation, Fuzzy Sets and Systems 8 (1982), 225-233.
- [5] D. Goeken and Johnson, Runge Kutta with higher order derivative approximations, Applied Numerical Mathematics 34 (2000), 207-218.
- [6] R. Goetschel and W. Voxman, Elementary Calculus, Fuzzy Sets and Systems 24 (1987), 31-43.
- [7] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems 35 (1990), 389-396.
- [8] Ming Ma, M. Friedman and A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and System 105 (1999), 133-138.