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Abstract 

Recently, the treatment of central nervous system (CNS) diseases is a major problem in 

modern clinical world. Now, there are many drugs available that treat symptoms rather than the 

disease, therefore, new drugs and new techniques of treatment are needed. In human, 

cerebrospinal fluid (CSF) is easily accessible fluid that can be used to predict the drug 

concentration in CNS target site. This process can be represented by mathematical model of drug 

concentration equation with the help of integer order partial derivatives, but fractional order 

modeled scribes the drug concentration at CNS target site more precisely. Therefore, the purpose 

of this paper is to develop the fractional order Crank-Nicolson finite difference scheme to solve 

the time fractional drug concentration equation, formulated with Caputo fractional derivative. 

Also, we prove that the scheme is unconditionally stable and convergent. As an application of 
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this scheme, numerical solutions of fractional order drug concentration equation in the central 

nervous system is examined to verify the stability and these solutions are simulated graphically 

using Python. 

1. Introduction 

Fractional calculus is a newly developed branch of mathematics which 

deals with the study of derivatives and integrations of arbitrary order. In 

recent years, many areas of applied science and technology have used 

fractional order approach to describe certain phenomena and processes. 

Fractional order mathematical models describing the physical phenomena 

are appears in many applications of sciences, such as the fractional diffusion 

equation [24], fractional subdiffusion equation [31], fractional wave equation 

[6, 24], fractional Boussinesq’s equation [28], fractional heat equation, 

fractional viscoelastic theory [2], etc. The arbitrary order mathematical model 

provides better physical analysis rather than integer order model, because it 

provides results at any inter-mediate stage by considering all the inputs 

starting from initial stage rather than only previous stage [12]. Many 

dynamical models of physics, engineering, biomedical, fluid dynamics, 

hydrology, etc. [4, 3, 7, 12, 15, 18, 19, 21] are modeled by fractional order 

partial differential equations. Now a days, due to its tremendous applications 

in various fields, a remarkable attention has been given to find its exact and 

approximate solution. Due to non-local nature of fractional derivative, many 

fractional differential equations do not have exact solutions. Therefore, to 

solve the fractional differential equations, numerical techniques are more 

demanding. To develop numerical methods for solving fractional differential 

equations, which are accurate and timely efficient is the primary challenge to 

researchers. We observed that the fractional derivatives in Caputo sense is 

more feasible to analyze the physical problem and it allowed to deal with 

integer-order initial and boundary conditions [7]. Finite difference method is 

one of the more effective and commonly used method to solve fractional 

differential equations. In the literature [9, 10, 11, 14, 17, 20, 23, 25, 26, 28], 

finite difference method is successfully used to obtain the numerical solutions 

of fractional differential equations. 

Now a days, Pharmacokinetics is the branch of Pharmacology which 

study the drug absorption, distribution, metabolism and excretion in human 

body [13]. In Pharmacology, one of the significant challenge is the 
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development of drugs targeting disease of the central nervous system (CNS). 

Due to medical ethics, direct measurement of brain concentration is 

restricted and due to presence of bloodbra in barrier (BBB), the prediction of 

target site concentration of CNS drug is more complicated [32]. Many 

researchers [9, 29, 30, 32] in pharmacology has developed a physiologically 

based pharmacokinetics modeling describing a drug concentration in CNS. 

The Advection-Diffusion equation describes the evolution of a concentration 

profile due to diffusion and advection simultaneously [1]. A mathematical 

modeling describing the drug concentration in CNS based on Advection-

Diffusion equation is studied in [5]. In this context, we study the fractional 

order drug concentration equation in the central nervous system. 

Furthermore, we develop the Crank-Nicolson fractional order finite difference 

scheme for fractional order drug concentration equation and obtain its 

approximate solution. There are many numerical techniques developed for 

solving fractional differential equations using mathematical softwares [6, 10, 

16]. We observed that, Python is a high level multi-purpose programming 

language having large number of mathematical tools. Recently, Python is 

used for teaching as well as research in various branches of applied 

mathematics. Therefore, in this connection we develop Python programme to 

obtain the numerical solution of the drug concentration equation by the 

proposed scheme. 

We organized the paper as follows: In section 2, we develop the fractional 

order Crank-Nicolson finite difference scheme for time fractional drug 

concentration equation. Section 3 is devoted for stability of the solution 

obtained by the scheme. In section 4, convergence of the scheme is discussed 

up to the length. In section 5, the approximate solution of the time fractional 

drug concentration equation is computed and it is simulated graphically by 

Python. We consider the time fractional drug concentration equation with 

initial and boundary conditions as follows 

( ) ( ) ( )
TtLx

x

txc
D

x

txc
v

t

txc
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−=








0,0,10,
,,,
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 (1.1) 

initial condition: ( ) Lxxc = 0,00,  (1.2) 

boundary conditions: ( ) ( )
( )

0,0
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,,0 =



= t
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tLc
tgtc  (1.3) 
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where ( )txc ,
 
is the drug concentration in CSF space at time t and place vx,

is the flow velocity and D is the diffusion coefficient. We discretized time 

fractional order derivative in the Caputo sense. 

The Caputo derivative of order  is defined as follows [22, 23] 

( )
( )

( )
( )
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−
=
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10,

,

1

1,
 (1.4) 

where ( )  is the gamma function defined as 

( ) 


−−=
0

1 .dxxe x
 (1.5) 

2. Finite Difference Scheme 

In this section, we develop the fractional order Crank-Nicolson finite 

difference scheme for time fractional drug concentration equation (1.1)-(1.3). 

For this, we define Mixixi ,,3,2,1,0, ==
 

and ,tktk =

,,,3,2,1,0 Nk =
 

where 
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L
x =

 
and .
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Let ( ),, ki txc

Mi ,,3,2,1,0 =
 
and ,,,3,2,1,0 Nk =

 
be the exact solution of time 

fractional drug concentration equation (1.2)-(1.3) at mesh point ( )ki tx ,
 
and 

let k
ic  

be the numerical approximation at point ( )., ki tx
 
The time fractional 

drug concentration equation with initial and boundary conditions (1.1)-(1.3) 

is discretized by using the second order accurate central difference formula 

for space derivative and finite difference formula for the time fractional 

derivative for each interior grid point ( )., tkxi 
 
At time level ,1+= ktt

 
the 

Caputo time fractional derivative of order  is discretized as follows 
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where ( ) .,,3,2,1,0,1 11 kjjjbj =−+= −−
 

Since, Ttk   is finite, the above equation can be written as, 
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Furthermore, the space derivatives 
x

c





 
is disretized as follows 
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The space derivative 
2
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is discretized by using second order central 

difference scheme as follows 
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where x  
is the central difference operator. 

Now, using equations (2.1), (2.2) and (2.3) in equation (1.1), we obtain 
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After simplification, for ,,,3,2,1,0 Nk =
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Now, put 0=k  in equation (2.4), we get 
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k
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Finally, the initial condition ( ) ( )Lxxc = 000,
 
is approximated as 

follows: 

.,,3,2,1,00 Mici ==  (2.7) 

Also, the boundary conditions ( ) ( )tgtc =,0
 
and 
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Thus, the complete discretized time fractional drug concentration 

equation with initial and boundary condition is as follows 
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where 
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Therefore, the discretized fractional order Crank-Nicolson finite 

difference scheme (2.10)-(2.13) can be expressed in matrix form as follows 
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3. Stability 

In this section, we discuss the stability of solution of the fractional order 

Crank-Nicolson finite difference scheme (2.10)-(2.13) developed for the time 

fractional drug concentration equation (1.1)-(1.3) with initial and boundary 

conditions. 

Lemma 3.1. The eigenvalues of MM  tri-diagonal matrix 
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1
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where ba,
 
and c are either real or complex numbers [25]. 

Lemma 3.2. If ( ) 1,,4,3,2,1, −= MjAj 
 
represent eigenvalues of a 

matrix A, then following conditions are hold 

(i) ( ) 1 Aj  

(i) ,12
1 −A

 
where 2

 
is the second norm of matrix. 

Proof. By the Gerschgorin’s circle theorem [25], if  is a eigenvalue of a 

square matrix  ija
 
then  is in at least one of the following disc 
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Thus, each eigenvalue  of a square matrix  ija
 
satisfy at least one of the 

following inequality 
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Now, we use inequality (3.3) to prove the condition (i) for the matrix A as 

( ) ( ) ( ) 11211 +=−++ rrrA  

( ) ( ) ( ) ( ) 1212 =−+−++ rrrA  

( ) ( ) ( ) ( ) 1213 =−+−++ rrrA  

  

( ) ( ) ( ) ( ) 121 =−+−++ rrrAM  

Thus, .,,3,2,1,1 Mjj =  

To prove condition (ii), we have 

( ) .max
1

2 AA j
Mj

=


 

Therefore, from condition (i), we get 

.12 A  

Hence, 

12
1 −A  

This complete the proof. □ 

Lemma 3.3. The discretized fractional order Crank-Nicolson finite 

difference scheme with initial and boundary conditions (2.10)-(2.13) is 
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solvable for each time step unconditionally. 

Proof. To prove the solvability of equations (2.10) and (2.12), it is enough 

to prove that matrix A is invertible [8, 27]. We observed that, the first and 

last row of matrix A is diagonally dominant. For other rows, the diagonal 

element is r21 +  and the sum of the absolute values of the non-diagonal 

element in the same row is, 

( ) ( ) .2rrr =−+−  

Hence, for each row, we have .221 rr +  Thus, matrix A is strictly 

diagonally dominant. Hence, matrix A is invertible. This shows that the 

solvability of the finite difference scheme. □ 

Lemma 3.4. If ( )Bs  
and ( )Fs  

represents the eigenvalues of B and F 

respectively, then following conditions are hold 

(i) ( ) ( ) MsFB ss ,,3,2,1,1,1 =  

(ii) .,,3,2,1,1,1 22 MsFB =  

Theorem 3.5. The solution of the fractional order Crank-Nicolson finite 

difference scheme (2.10)-(2.13) for time fractional drug concentration equation 

(1.1)-(1.3) is unconditionally stable. 

Proof. To prove the developed finite difference scheme is unconditionally 

stable, we will prove that 

,3,2,1,2
0

2 = nCKCn  

where K is positive integer independent of x and t. 

For ,1=n  from equation (2.14), we obtain 

01011 SABCAC −− +=  

2
0

2
1

2
0

22
1

2
1 SACBAC −− +  

2
0

2
0 SC +  

,2
0

12
0 CKC +  where ,12

0 KS =  a constant. 

Thus, result is true for .1=n  
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For ,kn   let us assume that 

.2
0

2 CKCk   

Now, for ,1+= kn  from equation (2.15), we obtain 
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Hence, by induction, for all n, we have 

2
0

2 CKCn   

where K is a positive number independent of x and t. 

Therefore, this shows that the scheme is unconditionally stable. 

This complete the proof. □ 

4. Convergence 

In this section, we discuss the convergence of the scheme. Let  be the 

region    .,0,0 TL 
 

We introduce the vector, ( ( ) ( ),,,, 10 kk
k txctxcC =

( ) ( ))TkMk txctxc ,,,,2 
 
of size ,1+M  which represent the exact solution of 

the time fractional drug concentration equation (1.1)-(1.3) at time level .kt  
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Let ( )Tk
M

kkkk = ,,,, 321 
 
be the vector of truncation error at time level 

.kt  Since 
kC  is the exact solution of the equation (1.1)-(1.3), we have 

,1001 ++= SCBCA  for .0=k  (4.1) 
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Lemma 4.1. The coefficient ,3,2,1,0, =jbj  
satisfy the following 

conditions 

(i) 0jb  

(ii) .1+ jj bb  

Theorem 4.2. The fractional order Crank-Nicolson finite difference 

scheme (2.10)-(2.13) for time fractional drug concentration equation (1.1)-(1.3) 

is unconditionally convergent. 

Proof. We set, ( )Tk
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in the solution at time level .kt  
Furthermore, we assume that 
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This is true for every k, therefore we have 

1

1
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+ + k
i
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Hence, by induction, we get 

1

1

1 max +




+ + n
i

Mi

nn EE  

As ,00 =


E
 
implies .0=


nE  

Therefore, .max 1

1

1 +




+  n
i

Mi

nE  

Since 0max 1

1
→ +



n
i

Mi  
as ( ) ( ),0,0, → tx

 
implies that 01 →


+nE

uniformly on  as ( ) ( ).0,0, → tx  

Therefore, this shows that for any x and t, as ( ) ( ),0,0, → tx
 
the vector 

nC  converges to .nC  

Hence, this complete the proof. □ 

5. Python Programme 

In this section, we develop the algorithm for solving the discretized 
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scheme (2.10)-(2.13) using Python programme. Here we compute k
ic  

at each 

mesh point ( )ki tx ,
 
using the proposed scheme by Python. The algorithm for 

the scheme (2.14)-(2.17) is as follows 

(i) Define ( )ktg
 
for each .,,3,2,1,0 Nk =  

(ii) Compute the matrix BA,
 
and F. 

(iii) Compute 
0C  and ,0S  then compute .1C  

(iv) Compute .1S  Then using ,1C  compute .2C  

(v) Compute .kS  Then compute 
1+kC  for each .,,4,3,2 Nk =  

Now, we develop the python programme DCE for complete discretized 

scheme (2.14)-(2.17) as follows: 

Inputs: 

g - boundary condition at x=0. 

C - drug concentration 

L - spatial length 

T - end time 

D - diffusion coefficient of drugs 

mu -  

a - fractional order  of time derivative 

t1 - time at which solution to be estimated. 

Output of Python programme DCE is the approximate value of vector 

( )., ki txC  

import scipy 

from scipy import * 

import math 

from math import * 
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def g(k): 

return(c(0,t)) 

import numpy as np 

def DCE(g,v,L,T,dx,dt,D,a,t1): 

r=dt**a*D*math.gamma(2-a)/(2*dx**2) 

mu=v*dt**a*math.gamma(2-a)/(2*dx) 

N=int(round(T/dt)) 

M=int(round(L/dx)) 

t=np.linspace(0,N*dt,N+1) 

x=np.linspace(0,M*dx,M+1) 

A = np.zeros((M+1, M+1)) 

A[0, 0] = 1+2*r 

A[0, 1]=-r 

A[M,M-1]=-2*r 

A[M, M] = 1+2*r 

for i in range(1, M): 

A[i, i-1] = -r 

A[i, i] = 1+2*r 

A[i, i+1] = -r 

B=np.zeros((M+1,M+1)) 

B[0,0]=1-2*r 

B[0,1]=r-mu 

B[M,M-1]=2*r 

B[M,M]=1-2*r 

for i in range(1,M): 

B[i, i-1] = r+mu 
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B[i, i] = 1-2*r 

B[i, i+1] = r-mu 

F=np.zeros((M+1,M+1)) 

F[0,0]=1-2*r-((1+1)**(1-a)-1**(1-a)) 

F[0,1]=r-mu 

F[M,M-1]=2*r 

F[M,M]=1-2*r-((1+1)**(1-a)-1**(1-a)) 

for i in range(1,M): 

F[i, i-1] = r+mu 

F[i, i] = 1-2*r-((1+1)**(1-a)-1**(1-a)) 

F[i, i+1] = r-mu 

C=np.zeros((N+1,M+1)) 

S0=np.zeros(M+1) 

S0[0]=(r+mu)*g(t[0])+r*g(t[1]) 

b0=B@C[0]+S0 

C[1]=scipy.linalg.solve(A,b0) 

S1=np.zeros(M+1) 

S1[0]=(r+mu)*g(t[1])+r*g(t[2]) 

b1=F@C[1]+S1 

C[2]=scipy.linalg.solve(A,b1) 

for k in range(2,N): 

ek=(k+1)**(1-a)-k**(1-a) 

Sk=np.zeros(M+1) 

Sk[0]=(r+mu)*g(t[k])+r*g(t[k+1]) 

sum=np.zeros(M+1) 

for j in range(1,k): 
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sum=sum+((j+1)**(1-a)-j**(1-a)-(j+2)**(1-a)+(j+1)**(1-a))*C[k-j] 

bk=F@C[k]+sum+ek*C[0]+Sk 

C[k+1][:]=scipy.linalg.solve(A,bk) 

t1=int(t1/dt) 

return(x,C[t1]) 

6. Numerical Solutions 

In this section, we obtain the approximate solution of time fractional drug 

concentration equation (1.1)-(1.3) by a developed fractional order Crank-

Nicolson finite difference scheme (2.10)-(2.13). 

6.1 Test Problem 1. Steady State Concentration 

In pharmacology, the steady state of drug is an important fundamental 

concept. Steady-state is a situation during which the concentration of drug in 

the body is stable. In the treatment of CNSdisease, understanding of steady-

state is important for choosing the right dose and determining the dosing 

interval to achieve a desire steady-state concentration. This is the situation 

corresponds to where maintenance dose is given in order to keep the drug 

concentration constant in the brain ECF [5]. If the concentration in brain 

ECF remains constant, then we will obtain the drug concentration in the CSF 

changes along the CSF space by the following drug concentration equation 

( ) ( ) ( )
0,80,10,

,,,
2

2





+




−=




tx

x

txc
D

x

txc
v

t

txc
a

 

initial condition: ( ) 80,00, = xxc  

boundary conditions: ( )
( )

( ).00
,8

,3,0 =



= t

x

tc
tc  

The exact solution of the problem for 1=  is given as [5] 

( ) .
222

3
,





















 +
+







 −
=

Dt

vtx
erfce

Dt

vtx
erfctxc D

vx

 

With the help of Python programme DCE, we calculate the drug 

concentration ( )txc ,
 
for anytime .kt  

The numerical solutions of the time 
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fractional drug concentration equation obtained by developed scheme for 

8.0,9.0,0.1=
 

with the parameters 01.0,7.0,5.0 === xDv
 

and 

001.0=t  is represented graphically in Figure 1. Furthermore, we simulate 

the numerical solution of the time fractional drug concentration equation for 

different values of x in Figure 2. The exact solution and numerical solution 

for 1=  with the parameters 01.0,7.0,5.0 === xDv
 
and 001.0=t  

at time 2=t  are shown in Table 1. We observed that the magnitude of the 

error of exact solution and numerical solution is of ( ( ) ).2xtO +  

 

(a) 2=t                                             (b) 3=t  

Figure 1. Drug concentration profile with the parameters ,5.0=v

001.0,01.0,7.0 === txD
 
and .8.0,9.0,0.1=  

 

(a) 1=x                                      (b) 2=x  

Figure 2. Numerical solution of steady state concentration for 1=x and 

2=x  with the parameters 01.0,5,7.0,5.0 ==== xTDv  and 

.001.0=t  
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Table 1. Comparision of exact solution and numerical solution for 

01.0,7.0,5.0,2,1 ===== xDvt
 
and .001.0=t  

x  Exact Solution Numerical Solution 
Error k

i
k
i

k
i

cce −=  

0.0  3.0 2.993907278649013 0.006092721350987151 

0.5  2.6456568378800114 2.637640626024081 0.0080162118559306 

1.0  2.210862045444807 2.2016244916677286 0.009237553777078578 

1.5  1.7395672793993147 1.7300687648213946 0.009498514577920059 

2.0  1.2820481022496093 1.2732489286656066 0.008799173584002729 

2.5  0.8812918247063797 0.8739078798391523 0.007383944867227377 

3.0  0.5631456958949884 0.5575140861890188 0.0056316097059696535 

3.5  0.33360708628476354 0.3296952147891131 0.003911871495650421 

4.0  0.1828205165043782 0.1803422974511022 0.0024782190532759985 

4.5  0.09251994640668684 0.0910867844617443 0.0014331619449425431 

5.0  0.04317739107570287 0.042420349641816124 0.0007570414338867459 

5.5  0.018560555515715397 0.01819513741539206 0.00036541810032333574 

6.0  0.007342283849504758 0.007181092835093199 0.00016119101441155938 

6.2 Test Problem 2. Elimination Phase 

The elimination phase of drug is the case corresponds to the drug being 

present in the CSF in the lateral ventricles at some concentration 0c
 
[5]. At 

,0=t  the injection is stopped and the elimination begins. This case is 

relevant for concentration-time profile on coarse time scale. Since the drug 

aggregation happens quite fast in the case of intravenous injection, it will not 

visible on such a time-scale and we will see only elimination phase in the 

plot. This phenomenon is study by the following time-fractional drug 

concentration equation 

( ) ( ) ( )
0,6,10,

,,,
2

2





+
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D

x

txc
v

t

txc
 

initial condition: ( ) 60,00, = xxc  
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boundary conditions: ( )
( )

( ).00
,6

,3,0 =



= − t

x

tc
etc t  

The exact solution of the problem for 1=  is given as [5] 

( )
( ) ( )





















 +
+







 −
=

+−
−

Dt

ytx
erfce

Dt

ytx
erfceetxc D

xyv

D

xyv
t

222

3
, 22  

where .42 Dvy −=  The numerical solutions of the time fractional drug 

concentration equation obtained by developed scheme for 8.0,9.0,0.1=

with the parameters 01.0,2.0,1 === xDv
 

and 001.0=t  are 

represented graphically in Figure 3 by Python programme DCE. 

Furthermore, we simulate the numerical solutions of the time fractional drug 

concentration equation for different values of x in Figure 4. In Table 2, we 

compare the exact solution and numerical solution of the time fractional drug 

concentration equation for 1=  with the parameters ,2.0,1 == Dv

01.0=x  and 001.0=t  at time .2=t  Moreover, we observe that the error 

in the calculation is of ( ( ) ).2xtO +  

 

(a) 1=t                                             (b) 2=t  

Figure 3. Drug concentration profile with the parameters ,2.0,1 == Dv

001.0,01.0 == tx
 
and .8.0,9.0,0.1=  
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(a) 2.0=x                              (b) 5.0=x  

Figure 4. Numerical solution for drug elimination for 2.0=x  and 5.0=x  

with the parameters 01.0,5,2.0,1 ==== xtDv
 
and .001.0=t  

Table 2. Comparision of exact solution and numerical solution for 

01.0,2.0,1,2,1 ===== xDvt and .001.0=t  

x  Exact Solution Numerical Solution 
Error k

i
k
i

k
i

cce −=  

0.0 0.40600584970983805  0.4108789821823356 0.004873132472497543 

0.5 0.690643252642077  0.6969777675627705 0.006334514920693479 

1.0 0.9910421336946248  0.9965539539700895 0.005511820275464707 

1.5 1.147116277674832  1.1484516174662687 0.0013353397914366294 

2.0 1.0385500472139912  1.0343063307369158 0.004243716477075443 

2.5 0.72077795551975  0.7133503723003761 0.007427583219373868 

3.0 0.37847592991323475  0.3718015170776765 0.006674412835558252 

3.5 0.14906463756342395  0.14515526386486594 0.003909373698558011 

4.0 0.04377805649358062  0.04219236700542997 0.0015856894881506461 

4.5 0.009547713552140515  0.009091836821831855 0.0004558767303086599 

5.0 0.0015417744244616016  0.001447866329388511 9.390809507309065e-05 

0.0 0.40600584970983805  0.4108789821823356 0.004873132472497543 

0.5 0.690643252642077  0.6969777675627705 0.006334514920693479 

6.3 Test Problem 3. Drug Aggregation 

The drug aggregation corresponds to the case in which drug is given 

continuously over a longer period of time [5]. The drug reaches the CSF at 

time 0=t  and no drug was present in the brainECF and CSF before that. 

The injection is continued long enough in order to reach the steady state 
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concentration and is not stopped within the period of time considered. This 

phenomenon is study by the following time-fractional drug concentration 

equation 

( ) ( ) ( )
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initial condition: ( ) .0,00, = xxc  

boundary conditions: ( )
( )

( ).00
,5

,3,0 =



= − t

x

tc
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The exact solution of the problem for 1=  is given as [5] 
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where .42 Dvy −=  With the help of developed python programme DCE, 

the numerical solutions of the time fractional drug concentration equation for 

8.0,9.0,0.1=
 

with the parameters 01.0,2.0,1 === xDv
 

and 

001.0=t  is represented graphically in Figure 5. Furthermore, we simulate 

the numerical solutions of the time fractional drug concentration equation for 

different values of x in Figure 6. In the Table 3, we compare the exact 

solution and numerical solution at time 3=t  for 1=  with the parameters 

01.0,2.0,1 === xDv  and .001.0=t  We observe that the magnitude of 

the error between the exact solution and numerical solution is of 

( ( ) ).2xtO +  
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(a) 2=t                                          (b) 3=t  

Figure 5. Drug concentration profile with the parameters ,1=v

001.0,01.0,2.0 === txD
 
and .8.0,9.0,0.1=  

 

(a) 1=x                                       (b) 2=x  

Figure 6. Numerical solution for drug aggregation for 1=x  and 2=x  with 

the parameters 01.0,2.0,1 === xDv  and .001.0=t  

Table 3. Comparision of exact solution and numerical solution for 

01.0,2.0,1,3,1 ===== xDvt
 
and .001.0=t  

x Exact Solution  Numerical Solution 
Error

k
i

k
i

k
i

cce −=  

0.0  2.8506387948964083 2.8486584009974187 0.0019803938989895187 

0.5  2.717400152250943 2.7140190061622556 0.003381146088687448 

1.0  2.495369092986084 2.490061111986018 0.005307981000065798 

1.5  2.1654336714236244 2.157966519981535 0.007467151442089204 

2.0  1.7376742713960167 1.7284649530934093 0.009209318302607405 

2.5  1.2617161036485738 1.251930562993927 0.009785540654646763 



CRANK-NICOLSON METHOD FOR TIME FRACTIONAL DRUG … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022 

431 

3.0   0.8126564196023055 0.8038171392485197 0.008839280353785783 

3.5  0.4565234712200368 0.44980441741804056 0.006719053801996222 

4.0  0.22062447196653884 0.21636491470986893 0.004259557256669905 

4.5  0.09072778152906447 0.08873837701972355 0.001989404509340917 

5.0  0.03147838582653009 0.040396872611049295 0.008918486784519203 

7. Conclusion 

(i) We successfully develop the fractional order Crank-Nicolson finite 

difference scheme for the time fractional drug concentration equation in the 

central nervous system. 

(ii) The stability and convergence of the developed scheme are both 

investigated. 

(iii) Furthermore, we successfully develop the Python programme for the 

time fractional drug concentration equation in the central nervous system. 

(iv) The performance and efficiency of the developed scheme is 

numerically tested using some numerical experiments. We observe that the 

error in the calculation is (( ) ( ) ).22 xtO +
−

 

(v) Finally, we conclude that Python is a very powerful tool for obtaining 

the numerical solutions of the time fractional drug concentration equation. 
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