

WIENER INDEX AND MEAN DISTANCE OF ZERO-DIVISOR TYPE GRAPH OF RING OF INTEGERS MODULO *n*

NURUL 'AIN MAZLAN, HAZZIRAH IZZATI MAT HASSIM, NOR HANIZA SARMIN and SANHAN MUHAMMAD SALIH KHASRAW

Department of Mathematical Science Universiti Teknologi Malaysia Skudai, 80990 Johor Bahru, Malaysia E-mail: nain369@graduate.utm.my

College of Education Salahaddin University-Erbil Erbil, Zanko Street 44001, Iraq E-mail: sanhan.khasraw@su.edu.krd

Abstract

The zero-divisor type graph was first introduced as the compression of zero-divisor graph by partitioning the vertices. For ring of integers modulo n, Z_n , the zero-divisor type graph of is a graph with vertex set contains T_d , where d is nontrivial divisor of n. Two distinct vertices, T_i and T_j are adjacent if $i \cdot j \neq 0$. The study of Wiener index and mean distance of a graph serves as a tool to calculate the sum of the distances between vertices in graph. The objective of this research is to compute the Wiener index and mean distance of the zero-divisor type graph of Z_{p^3q} . The Wiener index and mean distance of zero-divisor type graph of Z_n have been found to be constant for each factorization of n.

1. Motivation and Main Results Introduction

The study of zero divisor has been introduced in [1]. In 1988, Beck defined a zero-divisor graph of a ring R from the point view of graph coloring. Many researches have been conducted on these graph modification and

²⁰²⁰ Mathematics Subject Classification: 13A70.

Keywords: Zero-divisor type graph; Wiener index; Mean distance. Received November 2, 2021; Accepted November 15, 2021

various graph properties. Based on Anderson and Livingston in [2], the zerodivisor graph $\Gamma[R]$ of a ring R is a graph where the vertices are nonzero zerodivisor of the ring denoted as $Z^*[R]$ and two distinct vertices x and y are adjacent if xy = 0. Mulay in [3] study the graph of equivalence classes of zero-divisors of a ring R denoted as $\Gamma_E(R)$ which the zero-divisors is determined by the annihilator ideals. Smith in [5] introduced the zero-divisor type graph of Z_n denoted as $\Gamma^T[Z_n]$ where the same concept of the compression zero-divisors graph is applied. Other study related to the graph of equivalence classes of zero divisors of ring integer modulo n is as in [6].

A graph G is connected if each pair of the vertices is adjacent to other vertices in G. The order of finite graph G is the number of the vertices. A complete graph, K_n is a complete *n*-vertex graph which every vertex is adjacent to any other vertex in this graph. The distance between x and y in Gis the shortest length path from x to y denoted as d(x, y). If there exist no path, then $d(x, y) = \infty$ and d(x, x) = 0. A subgraph H of G is an induced subgraph of G if two vertices are adjacent in H if and only if the vertices are adjacent in G. The Wiener index of a graph G denoted as the total distances between all unordered pairs of vertices denoted as W(G)= $\sum_{\{x, y\} \in V(G)} d_G(x, y)$. Mean distance of a graph is the average distance between all vertices denoted as $\sigma(G) = \frac{W(G)}{k(k-1)}$, where k is the order of the graph. Let Z_n be the ring of integer modulo n. The study of the structure of $\Gamma^{T}[Z_{n}]$ associated to primes n has become the study motivation. In particular, this study demonstrates the Wiener index and mean distance for $\Gamma^{T}[Z_{p^{3}a}]$. Some problems related with zero-divisor graph are complicated to be solved even for ring with small values of n. Therefore, the vertices of the graph is divided by partition into cosets.

Definition 1.1 [5]. Zero-Divisor Type Graph

The zero-divisor type graph denoted as $\Gamma^T[Z_n]$ has vertices of T_i where *i* is divisor of *n* that is neither 1 nor 0. The sets of T_i creates a partition of the

zero divisor graph with $T_i = \{x \in Z^*(Z_n) \mid \gcd(x, n) = i\}$. Two vertices in $\Gamma^T[Z_n]$ are adjacent if and only if $i \cdot j = 0 \mod n$ where $i \neq j$.

Based on Definition 1.1, the following lemma is hold.

Lemma 1.1 [5]. The nature of adjacency between vertices of $\Gamma^{T}[Z_{p^{a}q^{b}}]$ is defined as:

Let $T_x, T_y \in V(\Gamma^T[Z_{p^aq^b}])$, therefore x, y can be written as $x = p^r q^s$ and $y = p^m q^n$. Then, T_x and T_y are adjacent if and only if $r + m \ge a$ and $s + n \ge b$.

In this section, some basic definition on graph theory and zero-divisor type graph of Z_n is discussed. In Section 2, the Wiener index and mean distance of $\Gamma^T[Z_{p^3a}]$ are calculated.

2. Wiener index and Mean Distance of $\Gamma^T[Z_{n^3a}]$

The first result in this section is on the Wiener index for $\Gamma^T[Z_{n^{3}a}]$.

Lemma 2.1 The distance between each pair of vertices in $\Gamma^{T}[Z_{p^{3}q}]$ are as follows:

$$\begin{split} d(T_i, T_j) &= 1 \ for \ (i, j) \in \{(p, p^2q), (q, p^3), (p^2, p^2q), (pq, p^2q)\}, \\ d(T_i, T_j) &= 2 \ for \ (i, j) \in \{(p, p^2), (p, pq), (p, p^3), (q, pq), (q, p^2q), (p^2, p^3)\}, \end{split}$$

 $d(T_i, T_j) = 3 \text{ for } (i, j) \in \{(p, p^2), (p, pq)\}.$

Proof. Let *i* and *j* be any nontrivial divisors of p^3q and i = j, then it is clear that $d(T_i, T_j) = 0$. Suppose $i \neq j$, then

Case 1. $d(T_i, T_j) = 1$.

There exists exactly 8 pairs of $V(\Gamma^T[Z_{p^3q}])$, T_i and T_j which are adjacent since Lemma 1.1 is hold.

Case 2. $d(T_i, T_i) = 2$.

Note that T_{p^2q} is adjacent to $T_i \ni i \in \{p, p^2, pq, p^2q\}$ and T_{p^3} is adjacent to $T_j \ni j \in \{q, pq, p^2q\}$. For vertex T_p and T_q , these vertices are only adjacent to one vertex each which are T_{p^2q} and T_{p^3} respectively.

Case 3. $d(T_i, T_j) = 3$.

To hold Lemma 1.1, vertex T_p only adjacent to T_{p^2q} and vertex T_q only adjacent to T_{p^3} . Therefore, for T_p to reach vertex T_q it must pass through both T_{p^2q} and T_{p^3} . As for T_{p^2} to reach T_q , it must pass through T_p (to hold Lemma 2.1) and T_{p^3} .

Theorem 2.1. Let $\Gamma^T[Z_{p^3q}]$ be the zero the zero-divisor type graph of Z_{p^3q} with p and q are distinct prime numbers. Then, the Wiener index of every $\Gamma^T[Z_{p^3q}]$ is 25.

Proof. Let p and q be two prime numbers with p < q. From Lemma 2.1, the following results is obtained.

$$W(\Gamma^{T}[Z_{p^{3}q}]) = \sum_{i \neq j} (T_{i}, T_{j}) = \frac{1}{2} [50] = 25.$$

Next, the mean distance for $\Gamma^T[Z_{p^{3q}}]$ is given in the next theorem.

Theorem 2.2. The mean distance of $\Gamma^T[Z_{p^3q}]$ is $\frac{5}{6}$.

Proof. By Theorem 2.1, $W(\Gamma^T[Z_{p^3q}]) = 25$ and $|W(\Gamma^T[Z_{p^3q}])| = 6$. Hence,

$$\sigma(\Gamma^{T}[Z_{p^{a}q}]) = \frac{W(\Gamma^{T}[Z_{p^{a}q}])}{k(k-1)} = \frac{25}{6(6-1)} = \frac{5}{6}.$$

3. Conclusion

-

In this paper, the Wiener index and mean distance of $\Gamma^T[Z_{p^3q}]$ has been described. The Wiener index and mean distance for $\Gamma^T[Z_{p^3q}]$ has been found to be constant for any prime p and q.

Acknowledgment

This work was funded by Universiti Teknologi Malaysia Fundamental Research Grant (UTMFR) Vote Number 16J09.

References

- [1] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
- [2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of commutative ring, J. Algebra 217 (1999), 434-447.
- [3] S. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533-3558.
- [4] S. Spiroff and C. Wikham, A zero-divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), 2338-2348.
- [5] B. Smith, Perfect zero-divisor graphs of Zn, Rose-Hulman Undergraduate Mathematics Journal 17 (2016), 1-12.