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Abstract 

Let  EVG ,  be a simple undirected graph. A subset D of  GV  is said to be dominating 

set if every vertex of   DGV   is adjacent to at least one vertex in D. The minimum cardinality 

taken over all minimal dominating sets of G is the domination number of G and is denoted by 

 .G  The domination uniform subdivision number  Gusd  is the least positive integer k such 

that the subdivision of any k edges from G results in a graph having domination number greater 

than that of G. In this paper, we characterize sd -critical graphs on .G  Also we determine 

bounds of   Gusd  according to the  .Gdiam  

1. Introduction 

Let  EVG ,  be a simple undirected graph of order n and size m. If  

 ,GVv   then the neighborhood of v is the set  vNG  (or  vN  consisting 

of all vertices u which are adjacent to v. The closed neighborhood is  
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     .vvNvNN GG   The degree of  v in G is  vN  and is denoted by 

 .deg v  The minimum degree of G is     GVvvG :degmin  and is 

denoted by  .G  A vertex v is said to be pendant vertex if   .1deg v  A 

path, a cycle and a complete graph on n vertices are denoted by nn CP ,  and 

nK  respectively. A complete bipartite graph is denoted by ., nmK  A graph is 

said to be connected if there exists a path between any pair of vertices. 

Otherwise it is said to be disconnected. The distance  vud ,  between two 

vertices u and v of a connected graph G is defined to be the length of any 

shortest path joining u and v. A shortest vu   path is often called as 

geodesic. The diameter of a connected graph G is the length of any longest 

geodesic and is denoted by  .Gdiam  

A subset D of  GV  is said to be dominating set if every vertex of 

  DGV   is adjacent to at least one vertex in D. The minimum cardinality 

taken over all minimal dominating sets of G is the domination number of G 

and is denoted by  .G  

The domination subdivision number introduced by Arumugam, Velammal 

in [13]. Its bound was obtained in [1] and several authors characterized trees 

according to their domination subdivision number. Also many results have 

also been obtained on the parameters cdd sdsd ,  and .tsd  An edge uve   

is said to be subdivided if it is deleted and replaced by a vu   path of length 

two with a new internal vertex w (subdividing vertex).  eG   is the graph 

obtained by subdividing the edge e. The domination subdivision number of a 

graph G is the minimum number of edges whose subdivision increases the 

domination number. It can also be defined as  Gsd  

    .:min GEGE   

A domination uniform subdivision number of G is the least positive 

integer k such that the sub division of any k edges from G results in a graph 

having domination number greater than that of G and is denoted by  .Gusd  

If it does not exist, then   .0 Gusd  This number was introduced and 

studied in [3]. 

A subset  GES   is said to be stable subdivision set if 
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   .GSG   A stable subdivision set S is said to be maximum stable 

subdivision set if there is no stable subdivision set S′ such that .SS   

  ,1 SGusd  where S is a maximum stable subdivision set of G. In [4] 

we have studied domination uniform subdivision number of 1KG   for some 

standard graphs. 

Wu and Meng [5] generalized the concept of total graphs to a total 

transformation graph xyzG  with   ,,, zyx  where G  is precisely 

the total graph of  G, and G  is the complement of .G  Each of these 

eight kinds of transformation graph xyzG  appears to have some nice 

properties; for instance, their diameters are small in most cases [5], and their 

edge A connectives are equal to their minimum degree etc. [8, 14]. Several 

authors discussed various concepts on transformation graphs [2, 9, 10, 11, 

14]. 

The transformation graph G  of G is a simple graph with vertex set 

   GEGV   in which adjacency is defined as follows: (a) two elements in 

 GV  are adjacent if and only if they are non-adjacent in  bG  two elements 

in  GE  are adjacent if and only if they are non-adjacent in G and (c) an 

element of  GV  and an element of  GE  are adjacent if and only if they are 

non-incident in G. The domination subdivision number of the transformation 

graph G  was studied in [2]. In [11], the domination subdivision number of 

G  has been investigated. In [14], Wiener Index of transformation graph 

G  has been determined. In this paper we study the domination uniform 

subdivision number of .G  

Terms not defined here are used in the sense of [6]. 

2. Main Results 

In this section, we characterize sd -critical graphs on .G  We 

determine the exact value of  usd  for a graph with diameter one and 2. Also 

we obtain the upper bound of usd  for diameter greater than or equal to 2. 
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Lemma 2.1. For any graph G,   1 Gusd   iff     0vNuN GG   for 

some pair of vertices in any minimum dominating set of G. 

Theorem 2.2. For       .132,7  
 nnKusdn n  

Proof of Theorem 2.2. We have   .3 
nK  let u and v be vertices of  

.nK  Let  21, ee  and 3e  be mutually independent edges in .nK  Then any -set 

of 
nK  is of the form    uvvueee ,,,,, 321  or  xee ,, 21  where x is incident 

with neither 1e  nor .1e  Since degree of subdividing vertex v of G  is two 

none of the minimum dominating sets of a derived graph G  obtained by 

subdividing one or more edges of G  containing v. Then minimum 

dominating set S  of G  must contain any one of the minimum dominating 

set of  .G  

Now we consider the dominating set  .,, 321 eee  Let ,211 uue   

432 uue   and .653 uue   Let 1S  be an edge set in G  consists of edges 

joining 1e  to all the edges in    6321 ,,,, uuuuGV   and edges joining 

2e  to all the edges in     .,,,, 6321 uuuuGV   Then 

   .761  nnS  Let  ,,,,,,, 212313625241312 eeueueueueueueS   

., 3231 eeee  Then .92 S  

Let  .,,,,, 2721713 nn ueueueueS   Then  .623  nS   

Let 4S  be set of edges in G  consists of edges joining 1e  to all the 

adjacent edges of 2e  which are incident with a vertex of  

   6321 ,,,, uuuuGV   in G. Then  .624  nS  Let 5S  be set of edges 

in G  consists of edges joining 2e  to all the adjacent edges of 3e  which are 

incident with a vertex of    6321 ,,,, uuuuGV   in G. Then 

 .625  nS  Let 6S  be set of edges in G  consists of edges joining 3e  

to all the adjacent edges of 1e  which are incident with a vertex of  

   6321 ,,,, uuuuGV   in G. Then  .626  nS  Take 

.621 SSSS   Then S is a maximal domination subdivision stable 
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set of  G  and 

       6662976  nnnnS  

   96276  nn  

    916  nn  

Now we consider the dominating set  .,, uvvu  Let 7S  be edge set of  

G  consists of edges joining u to all the edges in     vuGV ,  and edges 

joining v to all the edges in    vuGV ,  in G. Therefore  

   .327  nnS  We can easily verify that 7S  is a maximal subdivision 

domination subdivision stable set. 

Now we consider dominating set  xee ,, 21  where x is incident with 

neither 1e  nor .2e  Let 111 vue   and .222 vue   Let 8S  be edge set of G  

consists of edges joining 1e  to all the edges in     xvuvuGV ,,,, 2211  and 

edges joining 2e  to all the edges of    xvuvuGV ,,,, 2211  in G. Therefore 

   .658  nnS  Let 8S  be set of edges of G  consists of edges 

joining 1e  to all the vertices in    xvuvuGV ,,,, 2211  and edges joining 

2e  to all the edges of    xvuvuGV ,,,, 2211  in G. Therefore  

 .59  nS  Let 9S  be set of edges of G  consists of edges joining 1e  to 

all the vertices in    xvuvuGV ,,,, 2211  and edges joining 2e  to all the 

edges of     xvuvuGV ,,,, 2211  in G. Therefore .59  nS  Let 10S  be 

set of edges of G  consists of edges joining 1e  to all the adjacent edges of 

2e  whose end vertices in      ,,,,, 2211 xvuvuGV   edges joining 2e  to all 

the adjacent edges of 1e   whose end vertices in    xvuvuGV ,,,, 2211  

and edges joining 1e  to all the incident edges of x whose end vertices in 

    .,,,, 2211 xvuvuGV   Therefore  .5510  nS  Let 11S  be  set of 

edges of G  consists of edges joining 1e  to 12, ee  to x and 2e  to x. Then 

.311 S  Let 98 SSS   .1110 SS   We can easily verify that S   is a 

maximal domination subdivision stable set. 
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Then         355565  nnnnS  

   35165  nn  

  35  nn   

Now 7S  is a maximum domination subdivision stable set of .G  Hence 

      .132 
 nnGusd  

Observations 2.3. 

(1)   52 
 nPusd n  for all 4n  

(2)   72 
 nCusd n  for all 5n  

 (3)    2, 
 srKusd  for all 3, sr  

(4)    1,1 
 rKusd r  for all 3n  

 Theorem 2.4. For any graph GG,  is sd -critical iff G has an 

isolated vertex. 

Proof of Theorem 2.4. Assume that G has an isolated vertex v. Then 

 v  is a dominating set of G  and so   .1 G  Therefore subdivision of 

any edge of G  increases domination number. Hence   .1
 Gusd  

Thus G is sd -critical. 

Assume that G  is sd -critical. Then   .1
 Gusd  Suppose G has 

no isolated vertex. 

Case (i). G is disconnected 

Then G has at least two components 1G  and .2G  Then  ,, 21 uu  where 

   111 GEGVu   and    222 GEGVu   is minimum dominating set of   

G  and so   .2 G  Also there is an edge between 1u  and 2u  in 

.G  Further,   .221   uuG  Hence   .1
 Gusd  
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Case (ii). G is connected 

Subcase (i).   .1Gdiam   

Then .3,  nKG n  For ,7n  we can easily verify that 

  .1
 Gusd  By theorem 2.2, for      32,7  

 nnGusdn  

.11   

Subcase (ii).   .2Gdiam   

Then   .3 G  Also     0 vNuN
GG

  for any pair of 

vertices  vu,  of -set of  .G  Therefore   .1
 Gusd  

Subcase (iii).   .3Gdiam  

Then   .2 G  Let  vuS ,  be a minimum dominating set of  

.G  Then u and v must be adjacent in .G  Therefore 

    .0 vNuN
GG

  Hence   .1
 Gusd  

In both the cases we get a contradiction. Hence G has an isolated vertex. 

Theorem 2.5. Let G be a connected graph. If   ,3Gdiam  then 

    .24 
 GmnGusd  

Proof of Theorem 2.5. Since     .2,3  GGdiam  Then there 

exists  GVvx ,  such that   .3, vud  Therefore  vuS ,  is minimum 

dominating set in .G  In ,G  all the vertices in    vNuN GG   are 

adjacent to only one element of S. Similarly, all the edges incident with u or v 

in G are adjacent to only one element of S. The remaining vertices and edges 

of G are adjacent to both u and v in .G  Therefore subdivision of  

     1deg2deg2  vumn  edges in G  does not increase the 

domination number. Hence maximum subdivision domination stable set of  

G  contains at least      1deg2deg2  vumn  edges. 

Thus        11deg2deg2 
 vumnGusd  
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 .4 Gmn   

Corollary 2.6. If   ,3Gdiam  and G has at least two pendent vertices, 

then   .4
 mnGusd  

Theorem 2.7. If   ,2Gdiam  then     12
2


 nGusd  for all n. 

Proof of Theorem 2.7. Since   ,2Gdiam  there exists  GVwu ,   

such that   .2, wud  

Let us take wyvxu ,,,,  be path of length two where uvx   and 

vwy   are edges of G. Then  vxuS ,,  is a minimum dominating set of  

.G  Since      wvuGVGdiam ,,,2   are adjacent to v or and adjacent 

to both v and w. 

Case (i). There exists a vertex of degree 2. 

Without loss of generality we assume that   .2deg v  All the vertices in 

   vuGV ,  are adjacent to two elements of S in .G  All the incident 

edges of w except y are adjacent to all the three elements of S in .G  All 

the edges in    wvuGV ,,  are adjacent to all the three elements of S in 

G  and    wvuGV ,,  has at most 
   

2

43  nn
 edges. Therefore 

subdivision of at most          2243322  nnnnn  edges does 

not increase the domination number. Also maximum subdivision domination 

stable set has greater than or equal to  22n  edges of .G  Hence  

    .12
2


 nGusd  

Case (ii). There is no vertex of degree 2. 

Then we just remove all the edges joining v to    wvuGV ,,  from the 

domination subdivision stable set. Therefore maximum domination 

subdivision stable set has greater than or equal to  22n  edges of .G   

Hence     .12
2


 nGusd  
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Theorem 2.8. For any disconnected graph G with two components 1G   

and        .12, 212 
 GGmnGusdG  

Proof of Theorem 2.8. Since G is disconnected,   2 G  and 

minimum dominating set of G  is  vu,  where    11 GEGVu   and  

   .22 GEGVv   Let  1GVx   with    .deg 1GxG   Then  x
G deg  

is greater than or equal to      .,deg 11 GEGVyy
G

  Let  2GVz   

with    .deg 1GzG   Then  z
G deg  is greater than or equal to 

 ,deg y
G   where    .22 GEGVy   Then  zx,  is a minimum 

dominating set of .G  Let X be a set of incident edges x in G. Since 

        XxNGEGVS
G

  \111  is adjacent to both x and z, 

subdivision of the set of edges joining x to all the elements in 1S  does not 

increase the domination number. Let Z be set of incident edges of z in G. 

Since         ZzNGEGVS
G

  \222  is adjacent to both x and z, 

subdivision of the set of edges joining z to all the elements in 2S  does not 

increase the domination number. 

Since for any        xyGEGVy
G

degdeg,11    and for any 

       .degdeg,22 zwGEGVw
G

   21 SS   is a maximum 

domination subdivision stable set of .G  Hence   Gusd  

111  SS   

    122 222111  GmnGmn  

     .12 21  GGmn  

Corollary 2.9. Let G be a graph with nGGG ,,, 21   components. Then 

         .12 21 
 nGGGmnGusd   
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