

DOMINATION UNIFORM SUBDIVISION NUMBER OF

 G^{---}

M. K. ANGEL JEBITHA¹, T. BERJIN MAGIZHA² and S. SUJITHA³

^{1,3}PG and Research Department of Mathematics Holy Cross College (Autonomous)
Nagercoil, 629004, Tamil Nadu
E-mail: angeljebitha@holycrossngl.edu.in
sujitha.s@holycrossngl.edu.in

²Department of Humanities and Sciences St. Xavier's Catholic College of Engineering Chunkankadai, Nagercoil, 629 003, Tamil Nadu [Reg. No. 18233232092007, Manonmonia Sundaranar University, Tirunelveli]

Abstract

Let G = (V, E) be a simple undirected graph. A subset D of V(G) is said to be dominating set if every vertex of V(G) - D is adjacent to at least one vertex in D. The minimum cardinality taken over all minimal dominating sets of G is the domination number of G and is denoted by $\gamma(G)$. The domination uniform subdivision number $usd_{\gamma}(G)$ is the least positive integer k such that the subdivision of any k edges from G results in a graph having domination number greater than that of G. In this paper, we characterize sd_{γ} -critical graphs on G^{---} . Also we determine bounds of $usd_{\gamma}(G^{---})$ according to the diam(G).

1. Introduction

Let G = (V, E) be a simple undirected graph of order n and size m. If $v \in V(G)$, then the neighborhood of v is the set $N_G(v)$ (or N(v)) consisting of all vertices u which are adjacent to v. The closed neighborhood is

²⁰²⁰ Mathematics Subject Classification: 05C69.

Keywords: domination, domination subdivision and domination uniform subdivision.

 $^{{}^{2}}Corresponding \ author; \ E-mail: berjin@sxcce.edu.in$

Received February 3, 2022; Accepted March 2, 2022

6678 M. K. ANGEL JEBITHA, T. BERJIN MAGIZHA and S. SUJITHA

 $NN_G[v] = N_G(v) \cup \{v\}$. The degree of v in G is |N(v)| and is denoted by deg(v). The minimum degree of G is min $\{\deg_G(v) : v \in V(G)\}$ and is denoted by $\delta(G)$. A vertex v is said to be pendant vertex if deg(v) = 1. A path, a cycle and a complete graph on n vertices are denoted by P_n , C_n and K_n respectively. A complete bipartite graph is denoted by $K_{m,n}$. A graph is said to be connected if there exists a path between any pair of vertices. Otherwise it is said to be disconnected. The distance d(u, v) between two vertices u and v of a connected graph G is defined to be the length of any shortest path joining u and v. A shortest u - v path is often called as geodesic. The diameter of a connected graph G is the length of any longest geodesic and is denoted by diam(G).

A subset D of V(G) is said to be dominating set if every vertex of V(G) - D is adjacent to at least one vertex in D. The minimum cardinality taken over all minimal dominating sets of G is the domination number of G and is denoted by $\gamma(G)$.

The domination subdivision number introduced by Arumugam, Velammal in [13]. Its bound was obtained in [1] and several authors characterized trees according to their domination subdivision number. Also many results have also been obtained on the parameters sd_{dd} , $sd_{\gamma c}$ and $sd_{\gamma t}$. An edge e = uvis said to be subdivided if it is deleted and replaced by a u - v path of length two with a new internal vertex w (subdividing vertex). $G \wedge \{e\}$ is the graph obtained by subdividing the edge e. The domination subdivision number of a graph G is the minimum number of edges whose subdivision increases the domination number. It be defined $sd_{\nu}(G)$ can also \mathbf{as} $= \min \{ | E' | : \gamma(G \land E') > \gamma(G) \}.$

A domination uniform subdivision number of G is the least positive integer k such that the sub division of any k edges from G results in a graph having domination number greater than that of G and is denoted by $usd_{\gamma}(G)$. If it does not exist, then $usd_{\gamma}(G) = 0$. This number was introduced and studied in [3].

A subset $S \subseteq E(G)$ is said to be stable subdivision set if

 $\gamma(G \wedge S) = \gamma(G)$. A stable subdivision set S is said to be maximum stable subdivision set if there is no stable subdivision set S' such that |S'| > |S|. $usd_{\gamma}(G) = |S| + 1$, where S is a maximum stable subdivision set of G. In [4] we have studied domination uniform subdivision number of $G \circ K_1$ for some standard graphs.

Wu and Meng [5] generalized the concept of total graphs to a total transformation graph G^{xyz} with $x, y, z \in \{+, -\}$ where G^{+++} is precisely the total graph of G, and G^{---} is the complement of G^{+++} . Each of these eight kinds of transformation graph G^{xyz} appears to have some nice properties; for instance, their diameters are small in most cases [5], and their edge A connectives are equal to their minimum degree etc. [8, 14]. Several authors discussed various concepts on transformation graphs [2, 9, 10, 11, 14].

The transformation graph G^{---} of G is a simple graph with vertex set $V(G) \cup E(G)$ in which adjacency is defined as follows: (a) two elements in V(G) are adjacent if and only if they are non-adjacent in G(b) two elements in E(G) are adjacent if and only if they are non-adjacent in G and (c) an element of V(G) and an element of E(G) are adjacent if and only if they are non-incident in G. The domination subdivision number of the transformation graph G^{-+-} was studied in [2]. In [11], the domination subdivision number of G^{---} has been investigated. In [14], Wiener Index of transformation graph G^{---} has been determined. In this paper we study the domination uniform subdivision number of G^{---} .

Terms not defined here are used in the sense of [6].

2. Main Results

In this section, we characterize sd_{γ} -critical graphs on G^{---} . We determine the exact value of usd_{γ} for a graph with diameter one and 2. Also we obtain the upper bound of usd_{γ} for diameter greater than or equal to 2.

Lemma 2.1. For any graph G, $usd_{\gamma}(G) \ge 1$ iff $N_G(u) \cap N_G(v) \neq \emptyset$ for some pair of vertices in any minimum dominating set of G.

Theorem 2.2. For $n \ge 7$, $usd_{\gamma}(K_n^{---}) = (n-2)(n-3) + 1$.

Proof of Theorem 2.2. We have $\gamma(K_n^{---}) = 3$. let u and v be vertices of K_n . Let e_1, e_2 and e_3 be mutually independent edges in K_n . Then any γ -set of K_n^{---} is of the form $\{e_1, e_2, e_3\}$, $\{u, v, uv\}$ or $\{e_1, e_2, x\}$ where x is incident with neither e_1 nor e_1 . Since degree of subdividing vertex v of G^{---} is two none of the minimum dominating sets of a derived graph G^* obtained by subdividing one or more edges of G^{---} containing v. Then minimum dominating set S^* of G^* must contain any one of the minimum dominating set of G^{---} .

Now we consider the dominating set $\{e_1, e_2, e_3\}$. Let $e_1 = u_1u_2$, $e_2 = u_3u_4$ and $e_3 = u_5u_6$. Let S_1 be an edge set in G^{---} consists of edges joining e_1 to all the edges in $\langle V(G) - \{u_1, u_2, u_3, ..., u_6\}\rangle$ and edges joining e_2 to all the edges in $\langle V(G) - \{u_1, u_2, u_3, ..., u_6\}\rangle$. Then $|S_1| = (n-6)(n-7)$. Let $S_2 = \{e_1u_3, e_1u_4, e_2u_5, e_2u_6, e_3u_1, e_3u_2, e_1e_2, e_1e_3, e_2e_3\}$. Then $|S_2| = 9$.

Let
$$S_3 = \{e_1u_7, ..., e_1u_n, e_2u_7, ..., e_2u_n\}$$
. Then $|S_3| = 2(n-6)$.

Let S_4 be set of edges in G^{---} consists of edges joining e_1 to all the adjacent edges of e_2 which are incident with a vertex of $V(G) - \{u_1, u_2, u_3, ..., u_6\}$ in G. Then $|S_4| = 2(n-6)$. Let S_5 be set of edges in G^{---} consists of edges joining e_2 to all the adjacent edges of e_3 which are incident with a vertex of $V(G) - \{u_1, u_2, u_3, ..., u_6\}$ in G. Then $|S_5| = 2(n-6)$. Let S_6 be set of edges in G^{---} consists of edges joining e_3 to all the adjacent edges of e_1 which are incident with a vertex of $V(G) - \{u_1, u_2, u_3, ..., u_6\}$ in G. Then $|S_6| = 2(n-6)$. Take $S' = S_1 \cup S_2 \cup ... \cup S_6$. Then S is a maximal domination subdivision stable

set of G^{---} and

$$|S'| = (n-6)(n-7) + 9 + 2(n-6) + 6(n-6)$$
$$= (n-6)[n-7+2+6] + 9$$
$$= (n-6)(n+1) + 9$$

Now we consider the dominating set $\{u, v, uv\}$. Let S_7 be edge set of G^{---} consists of edges joining u to all the edges in $\langle V(G) - \{u, v\} \rangle$ and edges joining v to all the edges in $\langle V(G) - \{u, v\} \rangle$ in G. Therefore $|S_7| = (n-2)(n-3)$. We can easily verify that S_7 is a maximal subdivision domination subdivision stable set.

Now we consider dominating set $\{e_1, e_2, x\}$ where x is incident with neither e_1 nor e_2 . Let $e_1 = u_1v_1$ and $e_2 = u_2v_2$. Let S_8 be edge set of G^{---} consists of edges joining e_1 to all the edges in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$ and edges joining e_2 to all the edges of $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$ in G. Therefore $|S_8| = (n-5)(n-6)$. Let S_8 be set of edges of G^{---} consists of edges joining e_1 to all the vertices in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$ and edges joining e_2 to all the edges of $\langle V(G) - \{u_1, v_1, u_2, v_2, x\} \rangle$ in G. Therefore $|S_9| = (n-5)$. Let S_9 be set of edges of G^{---} consists of edges joining e_1 to all the vertices in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$ and edges joining e_2 to all the edges of $\langle V(G) - \{u_1, v_1, u_2, v_2, x\} \rangle$ in G. Therefore $|S_9| = n - 5$. Let S_{10} be set of edges of G^{---} consists of edges joining e_1 to all the adjacent edges of e_2 whose end vertices in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$, edges joining e_2 to all the adjacent edges of e_1 whose end vertices in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\}\rangle$ and edges joining e_1 to all the incident edges of x whose end vertices in $\langle V(G) - \{u_1, v_1, u_2, v_2, x\} \rangle$. Therefore $|S_{10}| = 5(n-5)$. Let S_{11} be set of edges of G^{---} consists of edges joining e_1 to e_2 , e_1 to x and e_2 to x. Then $|S_{11}| = 3$. Let $S'' = S_8 \cup S_9 \cup S_{10} \cup S_{11}$. We can easily verify that S'' is a maximal domination subdivision stable set.

Then
$$|S''| = (n-5)(n-6) + (n-5) + 5(n-5) + 3$$

= $(n-5)[n-6+1+5] + 3$
= $n(n-5) + 3$

Now S_7 is a maximum domination subdivision stable set of G^{---} . Hence $usd_{\gamma}(G^{---}) = (n-2)(n-3) + 1.$

Observations 2.3.

- (1) $usd_{\gamma}(P_n^{---}) = 2n 5$ for all $n \ge 4$
- (2) $usd_{\gamma}(C_n^{---}) = 2n 7$ for all $n \ge 5$
- (3) $usd_{\gamma}(K_{r,s}^{---}) = 2$ for all $r, s \ge 3$
- (4) $usd_{\gamma}(K_{1,r}^{---}) = r+1$ for all $n \ge 3$

Theorem 2.4. For any graph G, G^{---} is sd_{γ} -critical iff G has an isolated vertex.

Proof of Theorem 2.4. Assume that G has an isolated vertex v. Then $\{v\}$ is a dominating set of G^{---} and so $\gamma(G^{---}) = 1$. Therefore subdivision of any edge of G^{---} increases domination number. Hence $usd_{\gamma}(G^{---}) = 1$. Thus G is sd_{γ} -critical.

Assume that G^{---} is sd_{γ} -critical. Then $usd_{\gamma}(G^{---}) = 1$. Suppose G has no isolated vertex.

Case (i). *G* is disconnected

Then G has at least two components G_1 and G_2 . Then $\{u_1, u_2\}$, where $u_1 \in V(G_1) \cup E(G_1)$ and $u_2 \in V(G_2) \cup E(G_2)$ is minimum dominating set of G^{---} and so $\gamma(G^{---}) = 2$. Also there is an edge between u_1 and u_2 in G^{---} . Further, $\gamma(G^{---} \wedge u_1u_2) = 2$. Hence $usd_{\gamma}(G^{---}) > 1$.

Case (ii). *G* is connected

Subcase (i). diam(G) = 1.

Then $G = K_n$, $n \ge 3$. For n < 7, we can easily verify that $usd_{\gamma}(G^{---}) > 1$. By theorem 2.2, for $n \ge 7$, $usd_{\gamma}(G^{---}) = (n-2)(n-3) + 1 > 1$.

Subcase (ii). diam(G) = 2.

Then $\gamma(G^{---}) = 3$. Also $N_{G^{---}}(u) \cap N_{G^{---}}(v) \neq \emptyset$ for any pair of vertices (u, v) of γ -set of G^{---} . Therefore $usd_{\gamma}(G^{---}) \geq 1$.

Subcase (iii). $diam(G) \ge 3$.

Then $\gamma(G^{---}) \ge 2$. Let $S = \{u, v\}$ be a minimum dominating set of G^{---} . Then u and v must be adjacent in G^{---} . Therefore $N_{G^{---}}(u) \cap N_{G^{---}}(v) \neq \emptyset$. Hence $usd_{\gamma}(G^{---}) \ge 1$.

In both the cases we get a contradiction. Hence G has an isolated vertex.

Theorem 2.5. Let G be a connected graph. If $diam(G) \ge 3$, then $usd_{\gamma}(G^{---}) \le n + m - 4\delta(G) + 2$.

Proof of Theorem 2.5. Since $diam(G) \ge 3$, $\gamma(G^{---}) \ge 2$. Then there exists $x, v \in V(G)$ such that $d(u, v) \ge 3$. Therefore $S = \{u, v\}$ is minimum dominating set in G^{---} . In G^{---} , all the vertices in $N_G(u) \cup N_G(v)$ are adjacent to only one element of S. Similarly, all the edges incident with u or v in G are adjacent to only one element of S. The remaining vertices and edges of G are adjacent to both u and v in G^{---} . Therefore subdivision of $n + m - (2 \deg(u) + 2 \deg(v)) - 1$ edges in G^{---} does not increase the domination number. Hence maximum subdivision domination stable set of G^{---} contains at least $n + m - (2 \deg(u) + 2 \deg(v)) - 1$ edges.

Thus $usd_{\gamma}(G^{---}) \le n + m - (2\deg(u) + 2\deg(v)) - 1 + 1$

 $\leq n + m - 4\delta(G).$

Corollary 2.6. If $diam(G) \ge 3$, and G has at least two pendent vertices, then $usd_{\gamma}(G^{---}) \le n + m - 4$.

Theorem 2.7. If $diam(G) \ge 2$, then $usd_{\gamma}(G^{---}) \le (n-2)^2 + 1$ for all *n*.

Proof of Theorem 2.7. Since diam(G) = 2, there exists $u, w \in V(G)$ such that d(u, w) = 2.

Let us take u, x, v, y, w be path of length two where x = uv and y = vw are edges of G. Then $S = \{u, x, v\}$ is a minimum dominating set of G^{---} . Since diam(G) = 2, $V(G) - \{u, v, w\}$ are adjacent to v or and adjacent to both v and w.

Case (i). There exists a vertex of degree 2.

Without loss of generality we assume that $\deg(v) = 2$. All the vertices in $V(G) - \{u, v\}$ are adjacent to two elements of S in G^{---} . All the incident edges of w except y are adjacent to all the three elements of S in G^{---} . All the edges in $\langle V(G) - \{u, v, w\} \rangle$ are adjacent to all the three elements of S in G^{---} and $\langle V(G) - \{u, v, w\} \rangle$ has at most $\frac{(n-3)(n-4)}{2}$ edges. Therefore subdivision of at most $(n-2) + 2(n-3) + (n-3)(n-4) = (n-2)^2$ edges does not increase the domination number. Also maximum subdivision domination stable set has greater than or equal to $(n-2)^2$ edges of G^{---} . Hence $usd_{\gamma}(G^{---}) \leq (n-2)^2 + 1$.

Case (ii). There is no vertex of degree 2.

Then we just remove all the edges joining v to $\langle V(G) - \{u, v, w\}\rangle$ from the domination subdivision stable set. Therefore maximum domination subdivision stable set has greater than or equal to $(n-2)^2$ edges of G^{---} . Hence $usd_{\gamma}(G^{---}) \leq (n-2)^2 + 1$.

Theorem 2.8. For any disconnected graph G with two components G_1 and G_2 , $usd_{\gamma}(G^{---}) = n + m - 2[\delta(G_1) + \delta(G_2)] + 1$.

Proof of Theorem 2.8. Since G is disconnected, $\gamma(G^{---}) = 2$ and minimum dominating set of G^{---} is $\{u, v\}$ where $u \in V(G_1) \cup E(G_1)$ and $v \in V(G_2) \cup E(G_2)$. Let $x \in V(G_1)$ with $\deg_G(x) = \delta(G_1)$. Then $\deg_{G^{---}}(x)$ is greater than or equal to $\deg_{G^{---}}(y)$, $y \in V(G_1) \cup E(G_1)$. Let $z \in V(G_2)$ with $\deg_G(z) = \delta(G_1)$. Then $\deg_{G^{---}}(z)$ is greater than or equal to $\deg_{G^{---}}(y)$, where $y \in V(G_2) \cup E(G_2)$. Then $\{x, z\}$ is a minimum dominating set of G^{---} . Let X be a set of incident edges x in G. Since $S_1 = (V(G_1) \cup E(G_1)) \setminus (N_{G^{---}}(x) \cup X)$ is adjacent to both x and z, subdivision of the set of edges joining x to all the elements in S_1 does not increase the domination number. Let Z be set of incident edges of z in G. Since $S_2 = (V(G_2) \cup E(G_2)) \setminus (N_{G^{---}}(z) \cup Z)$ is adjacent to both x and z, subdivision of the set of edges joining z to all the elements in S_2 does not increase the domination number.

Since for any $y \in V(G_1) \cup E(G_1)$, $\deg_{G^{---}}(y) \leq \deg(x)$ and for any $w \in V(G_2) \cup E(G_2)$, $\deg_{G^{---}}(w) \leq \deg(z)$. $S_1 \cup S_2$ is a maximum domination subdivision stable set of G^{---} . Hence $usd_{\gamma}(G^{---})$ = $|S_1| + |S_1| + 1$

$$= n_1 + m_1 - 2\delta(G_1) + n_2 + m_2 - 2\delta(G_2) + 1$$
$$= n + m - 2[\delta(G_1) + \delta(G_2)] + 1.$$

Corollary 2.9. Let G be a graph with $G_1, G_2, ..., G_n$ components. Then

$$usd_{\gamma}(G^{---}) = n + m - 2[\delta(G_1) + \delta(G_2) + \dots + \delta(G_n)] + 1$$

References

- Amitava Bhattacharya and Gurusamy Rengasamy Vijayakumar, Effect of Edge-Subdivision on Vertex-Domination in a Graph, Discussiones Mathematicae Graph Theory 22 (2002), 335-347.
- [2] Angel Jebitha, M. K. and J. Paulraj Joseph, The Domination Subdivision Number of Transformation Graphs, International Journal of Mathematical Sciences and Applications 3(10) (2013), 283-294.
- [3] M. K. Angel Jebitha, Domination Uniform Subdivision Number of Graphs, International Journal of Mathematics Trends and Technology 27(1) (2015), 1-6.
- [4] M. K. Angel Jebitha and T. Berjin Magizha, The Domination Uniform Subdivision number of $G \circ K_2$, Advances in Mathematics: Scientific Journal 9(60) (2020), 4139-4144.
- [5] W. Baoyindureng and M. Jixiang, Basic Properties of Total Transformation Graph, J. Math. Study 34(2) (2001), 109-116.
- [6] Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition (2006).
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, (1998).
- [8] J. Chen, Super Edge-Connectivity of two classes of transformation graphs, Doctoral thesis, Xinjian University, 2006.
- [9] Lei Yi and Baoyindureng Wu, The Transformation Graph G^{++-} , Australasian Journal of Combinatorics 44 (2009), 37-42.
- [10] M. K. Angel Jebitha and Andrin Sahila, Domination Subdivision Number on G^{---} , Proceedings of International Conference on Innovation in Research and Pedagogy (2017), 115-117.
- [11] M. K. Angel Jebitha, Results on sd_{γ} -critical Graphs, Crossian Resonance 8(1) (2017), 61-64.
- [12] M. K. A. Jebitha and J. P. Joseph, Domination in Transformation Graph G⁻⁺⁻, J. Discrete Math Sciences and Cryptography 14(3) (2011), 279-303.
- [13] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph. D. Thesis, (1997).
- [14] Yanhua Zhao, Wiener Index of Transformation graph G⁻⁻⁻, Advances in Applied Mathematics 8(4) (2019), 703-707.
- [15] Z. Zhang and X. Huang, connectivity of transformation graph G^{+++} , Graph Theory Notes of New York XLIII (2002), 35-38.