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Abstract 

This paper, introduces the notions of fuzzy implicative ideals and fuzzy sub-implicative 

ideals in Z-algebras. Further, the relationship between fuzzy Z-ideal, fuzzy implicative ideal and 

fuzzy sub-implicative ideal are obtained. 

1. Introduction 

In 1966, Imai and Iseki [2, 3] introduced two new classes of abstract 

algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-

algebras is a proper subclass of the class of BCI-algebras. In 2017, 

Chandramouleeswaran et al. [1] introduced the concept of Z-algebras as a 

new structure of algebra based on propositional calculus. In order to deal 

with the problem of uncertainty in the real physical world, in 1965 Zadeh [13] 

introduced the notion of fuzzy sets. In 1991, Xi [12] applied the concept of 

fuzzy sets to BCK-algebras. In 1992, Meng and Xin [5] introduced the concept 

of implicative ideals in BCI-algebras. In 1999, Jun et al. [4] studied the 
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concept of fuzzy implicative ideals and constructed a fuzzy characteristic 

implicative ideal in BCK-algebras. In our earlier papers [6-11], we introduced 

the notions of fuzzy Z-Subalgebras and fuzzy Z-ideals in Z-algebras. In this 

paper, we introduce the concept of fuzzy implicative ideals in Z-algebras and 

prove some interesting results. 

2. Preliminaries 

Definition 2.1 [1]. A Z-algebra  0,, X  is a nonempty set X with a 

constant 0 and a binary operation  satisfying the following conditions: 

(Z1) 00 x  

(Z2) xx 0  

(Z3) xxx   

(Z4) xyyx   when 0x  and .,0 Xyxy   

Definition 2.2 [1]. Let  0,, X  be a Z-algebra and I be a subset of X. 

Then, I is called an Z-ideal of X, if it satisfies the following conditions: For all 

yx,  in X, 

(i) I0  

(ii) Iyx   and .IxIy   

Definition 2.3 [1]. Let  0,, X  and  0,, Y  be two Z-algebras. A 

mapping    0,,0,,:  YXh  is said to be a Z-homomorphism of Z-

algebras if      yhxhyxh   for all ., Xyx   

Definition 2.4 [13]. A fuzzy set A in X is characterized by a membership 

function:  .1,0:  XA  

Definition 2.5 [7]. Let  0,, X  be a Z-algebra. A fuzzy set A in X with 

membership function A  is said to be a fuzzy Z-ideal of a Z-algebra X if it 

satisfies the following conditions: For all yx,  in X, 

(i)    xAA  0  

(ii)       .,min yyxx AAA   
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Definition 2.6 [4]. A fuzzy set  in a BCK-algebra X is called a fuzzy 

implicative ideal of X if:  

(i)    x 0  and 

(ii)         zzxyxxA  ,min  for all .,, Xzyx   

3. Fuzzy Implicative Ideals in Z-Algebras 

In this section, we introduce the notions of fuzzy implicative ideals and 

fuzzy sub-implicative ideals in Z-algebras. Also, the relationship between 

fuzzy implicative ideal, fuzzy sub-implicative ideal and fuzzy Z-ideal of a Z-

algebra are discussed. 

Definition 3.1. A Z-algebra  0,, X  is said to be an implicative if it 

satisfies the condition       ,xyyxyyxx   for all ., Xyx   

Example 3.2. Consider the Z-algebra  3,2,1,0X  with the binary 

operation * defined by the following table: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 2 2 

2 0 2 2 1 

3 0 2 1 3 

Then,  0,, X  is an implicative Z-algebra. 

Example 3.3. Consider the Z-algebra  3,2,1,0X  with the operation 

  defined by the following table: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 3 3 

2 0 3 2 1 

3 0 3 1 3 
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Then,  0,, X  is a Z-algebra. But, it is not an implicative Z-algebra since 

      .1221312211   

Definition 3.4. A Z-algebra  0,, X  is called medial if   ,yyxx   

for all ., Xyx   

Example 3.4. Consider the Z-algebra  3,2,1,0X  with the binary 

operation   defined by the following table: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 3 2 

2 0 3 2 1 

3 0 2 1 3 

Then,  0,, X  is an implicative Z-algebra. 

Definition 3.6. A Fuzzy set A of a Z-algebra  0,, X  with membership 

function A  is called a fuzzy implicative ideal of X if it satisfies the following 

condition: 

(i)    xAA  0  

(ii)         ,,min zzxyxx AAA   for all .,, Xzyx   

Example 3.7. Consider the Z-algebra  3,2,1,0X  with the binary 

operation   defined by the following table: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 1 2 

2 0 3 2 3 

3 0 2 3 3 

Define a fuzzy set A of X with membership function A  is given by 

  5.0 xA  for all .Xx   Then A is a fuzzy implicative ideal of X. 
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Using Definition 3.1 and Definition 2.5, the following Proposition can be 

proved. 

Proposition 3.8. In a Z-algebra X, every fuzzy implicative ideal is a fuzzy 

Z-ideal. 

Theorem 3.9. A be a fuzzy Z-ideal of a Z-algebra X. Then A is a fuzzy 

implicative ideal of X if and only if A satisfies the following inequality: for all 

    .,, xyxxXyx AA   

Proposition 3.10. Let  iAi|  be a family of fuzzy implicative ideals 

of a Z-algebra X. Then  i
iA  is a fuzzy implicative ideal of X. 

Proof. Let .Xx   Then        x
iii

i
A

i
A

i
A 





sup0sup0  

 x
i

i
A


  

Let .,, Xzyx   Then we have 

           zzxyxxx
iiii

i
AA

i
A

i
A 





,minsupsup  

     zzxyx
ii A

i
A

i




sup,supmin  

     zAzxyxA ii
ii 
  ,min  

Hence 
i

iA  is a fuzzy implicative ideal of a Z-algebra X. 

Theorem 3.11. A fuzzy set A of a Z-algebra  0,, X  is a fuzzy 

implicative ideal if and only if for any    tUt A;,1,0   

   txXx A  |  is an implicative ideal of X where   .;  tU A  

Note. Hereafter,  tU A ;  is called level implicative ideal of a Z-algebra 

X. 

Theorem 3.12. Let A be a fuzzy implicative ideal of a Z-algebra X then 

two level implicative ideals  1; tU A  and  2; tU A  (with 21 tt   of A are 

equal if and only if there is no Xx   such that   .21 txt A   
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Proof. Let A be a fuzzy implicative ideal of a Z-algebra X. Assume that 

   21 ;; tUtU AA   for some 21 tt   and there exists Xx   such that 

  .21 txt A   Then  2; tU A  is a proper subset of  1; tU A  which is a 

contradiction. Hence there is no Xx   such that   .21 txt A   

Conversely, suppose that there is no Xx   such that   .21 txt A   

Since ,21 tt   we get    .;; 12 tUtU AA   (1) 

If  1; tUx A  then   1txA   and so   ,2txA   because  xA  does 

not lie between t and s. Hence  .; 2tUx A  Hence    .;; 21 tUtU AA  (2) 

From (1) and (2) we get    .;; 21 tUtU AA    

Remark 3.13. As a consequence of Theorem 3.9, the level implicative 

ideals of a fuzzy implicative ideal A of a finite Z-algebra X form a chain 

      ,;;; 10 XtUtUtU tAAA    where .210 rtttt    

Theorem 3.14. Let X be a finite Z-algebra and A be a fuzzy implicative 

ideal of X. If    ,,Im 1 nttA   then the family of implicative ideals 

  ,,,2,1,; nitU iA   constitutes all the level implicative ideals of A. 

Proof. Let  1,0t  and  .Im At   Suppose nttt  21  without 

loss of generality. If ,1tt   then    .;; 1 tUtU AA   Since  1; tU A  

  XtUX A  ;,  and    .;; 1 tUtU AA   

If ,ntt   then    tU A ;  obviously. 

If  ,1111   nittt i  then there is no Xx   such that 

  .1 1 iA tx  It follows from Theorem 3.12 that    .;; 1 iAA tUtU  

This shows that for any  ,1,0t  the level implicative Z-ideal  tU A ;  is in 

   .,,2,1|; nitU A   

Lemma 3.15. Let X be a Z-algebra and A be a fuzzy implicative ideal of X. 

If  AIm  is finite, say  nttt ,,, 21   then for any  ,Im, Att ji   

   jAiA tUtU ;;   implies .ji tt   

Theorem 3.16. Let A and B be two fuzzy implicative ideals of a Z-algebra 
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X with identical family of level implicative ideals. If    mtttA ,,,Im 21   

and    ,,,,Im 21 mqqqB   where mttt  21  and ,21 qqq    

then 

(i) .nm   

(ii)     .,,1;; miqUtU iBiA   

(iii) If Xx   such that   iA tt   then   .,,1, miqx iB   

Corollary 3.17. Let A and B be two fuzzy implicative ideals of a Z-

algebra X with identical family of level implicative ideals. Then 

   BA ImIm   if and only if .BA   

Theorem 3.18. Let A be a fuzzy set in a Z-algebra X with 

   ktttA ,,,Im 10   where .210 ktttt    If there exists a chain of 

implicative ideals of XIIIX k  10:  such that   nnA tI    

where ,,,1,0,, 11 knIIII nnn  


 then A is a fuzzy implicative 

ideal of X. 

Proposition 3.19. Let h be a Z-homomorphism from a Z-algebra 

 0,, X  onto a Z-algebra  0,, Y  and A be a fuzzy implicative ideal of X 

with the supremum property. Then the image of A denoted by  Ah  is a fuzzy 

implicative ideal of Y. 

Proposition 3.20. Let    0,,0,,:  YXh  be a Z-homomorphism of 

Z-algebras. If B is a fuzzy implicative ideal of Y, then  Bh 1  defined by 

 
    xhx BBh

 1  is a fuzzy implicative ideal of X. 

Proof. For any ,Xx   we have 

 
         

 
 .000 11 BhBBBBh

hxhx    

Let ., Xyx   Then 


 

   
 

 zzxyx
BhBh 11 ,min    

        zhzxyxh BB  ,min  
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              zhzhxhyhxh BB  ,min  

  
 

 xxh
BhB 1  

Hence  Bh 1  is a fuzzy implicative Z-ideal of a Z-algebra X. 

Corollary 3.21. Let X be a Z-algebra. Then A is a fuzzy implicative ideal 

of X if and only if the set AX  is an implicative ideal of X, where 

    .0| AAA xXxX   

Definition 3.22. A fuzzy set A of a Z-algebra  0,, X  with membership 

function A  is said to be a fuzzy sub-implicative ideal of X if it satisfies the 

following conditions: 

(i)    xAA  0  

(ii)             ,,min zzxyyxxxyy AAA   for all 

.,, Xzyx   

Example 3.23. Consider the Z-algebra  3,2,1,0X  with the binary 

operation   defined by the following table: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 1 2 

2 0 1 2 2 

3 0 2 2 3 

Define a fuzzy set A of X with membership function A  is given by 

  6.0 xA  for all .Xx   Then A is a fuzzy sub-implicative ideal of X. 

Proposition 3.24. Let X be a Z-algebra. Then every fuzzy sub-implicative 

ideal of X is a fuzzy Z-ideal of X. 

Proof. Put yx   in Definition 3.22 and using Definition 2.5. 

Theorem 3.25. Let X be an implicative Z-algebra. Then every fuzzy Z-

ideal of X is a fuzzy sub-implicative ideal of X. 
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Proof. Let A be a fuzzy Z-ideal of X. Let .,, Xzyx   Then, 

   xAA  0   (1) 

and          .,min zzxyyxyy AAA   Since X is an 

implicative,            .,min zzxyyxxxyy AAA    (2) 

From (1) and (2), A is a fuzzy sub-implicative ideal of X.  

Corollary 3.26. In a medial Z-algebra X, every fuzzy Z-ideal of X is a 

fuzzy sub-implicative ideal of X. 

Proof. Let A be a fuzzy Z-ideal of a medial Z-algebra X. Let .,, Xzyx   

Then,    xAA  0  (1) 

and          zzxxxyy AAAA  ,min   

      zzxyy AA  ,min  

        .,min zzxyyxx AA   

Hence A is a fuzzy sub-implicative ideal of X. 

Theorem 3.27. If X is a Z-algebra satisfies the condition: for all 

     zyxxzyXzyx AA  ;,,  then every fuzzy Z-ideal of X is a 

fuzzy subimplicative ideal of X. 

Proof. Let X be a Z-algebra satisfies the condition: 

     zyxxzy AA   for all .,, Xzyx   (1) 

Let A be a fuzzy Z-ideal of X. For ,,, Xzyx   

              zzxyyxxxyyxx AAA  ,min  

Put xyz   in (1),         xyyxxxyy AA   

           .,min zzxyyxxxyy AAA   

Therefore, A is a fuzzy sub-implicative ideal of X. 

Theorem 3.28. Let X be a medial Z-algebra satisfies the condition: for all 

        .,, xyxxyyxxXyx AA   
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Then every fuzzy sub-implicative ideal of X is a fuzzy implicative ideal of 

X. 

Proof. Let A be a fuzzy sub-implicative ideal of X. Then A is a fuzzy Z-

ideal of X. 

   ,0 xAA   for all Xx   (1) 

For ,,, Xzyx   

             xyxxyyxxxyyx AAAA   

      zzxyx AA  ,min  

Put  ,xyxz   

            xyxxyxxyxx AAA  ,min  

          .,min xyxxyxxyx AAA   

Therefore, by Theorem 3.9, A is a fuzzy implicative ideal of X. 

Theorem 3.29. Let X be an implicative Z-algebra. Then every fuzzy 

implicative ideal of X is a fuzzy sub-implicative ideal of X. 

Proof. A is a fuzzy implicative ideal of X implies A is a fuzzy Z-ideal of X. 

Then,    ,0 xAA   for all Xx   (1) 

For      xyyxxXzyx A  ,,,  

        zzxyyxx AA  ,min  

Since X is implicative,         .yxyxyyxx AA   

The following diagram gives the relations between fuzzy Z-ideal, fuzzy 

implicative ideal and fuzzy sub-implicative ideal of a Z-algebra 
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4. Conclusion 

In this article, we have introduced fuzzy implicative ideals in Z-algebras 

and discussed their properties. We extend this concept in our research work. 
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