
 

Advances and Applications in Mathematical Sciences 
Volume 21, Issue 1, November 2021, Pages 53-77 
© 2021 Mili Publications, India 

 

2020 Mathematics Subject Classification: 90B05. 

Keywords: Inventory, Deterioration, Order-linked trade credit, partial backlogging shortage, 

and inflation. 

Received November 16, 2019; Accepted January 15, 2020 

RETAILER’S OPTIMAL ORDERING POLICY FOR 

DETERIORATING ITEM’S WITH INFLATION ORDER 

LINKED TRADE CREDIT AND PARTIAL BACKLOGGING 

S. R. SINGH and RINKI CHAUDHARY 

Department of Mathematics 

C.C.S. University, Meerut, India 

E-Mail: shivrajsingh@gmail.com 

bcrinkichaudhary67@gmail.com 

Abstract 

In this paper, we present an economic order quantity model for decaying goods under 

inflation. Shortages are allowed which is partial backlogged and partial permissible delays in 

payment also allowable which is based on the order quantity. The major purpose of this paper is 

to establish optimal order and backlog policies to minimize optimum replenishment time and 

optimum cycle length and total inventory cost for retailers with these time values. Obtaining for 

this purpose various numerical and theoretical results are given which shows the model is 

validated numerically. Sensitivity analysis of the most favorable solution has been given with 

respect to the various parameters of the inventory organization. 

1. Introduction 

The economic order size inventory model assumes that permissible delay 

period allows the buyer to buy the supplies without immediate complete 

payment, while a supplier is required to pay the buyer upon receipt of the 

goods. Whenever demand increases then the supplier offers retailers credit 

period. Furthermore, if the ordered quantity is large then the provider desire 

to offer improved terms of trade provided. In an emerging economy, it is 

common and acceptable for small and micro-retailers to offer a business loan 

because these retailers need the economic income to pay when goods are 

received. In fact, the larger quantity ordered, improved the trading conditions 
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a trader can usually proposal to extend the delay period to reduce the 

retailer’s economic position. Shortly, if a vendor orders extra items from the 

trader, the vendor can gain worse credit expressions, take benefit of amount 

discounts and maybe recognize superior income. Firstly, Haley and Higgins 

[7] presented an inventory model with trade credit financing. After some time 

Goyal [5] described an EOQ model with the conditions of the trade credit 

period. Huang [8] designed an inventory model, assuming that the supplier 

offers retailers a trade credit period, although the ordered q is less than the 

predetermined quantity .qd  But to enjoy the trade credit period the retailers 

must pay a part of the total purchasing cost immediately. After that, he/she 

would pay the remaining amount at the end of the permissible delay period. 

Table 1. Summary of works related to inflation, trade credit and shortage. 

Source Inflation Trade credit Order depended 

trade credit 

Shortages EOQ/EPQ 

Chang et al. (2003)  Full   EOQ 

Chung and Liao (2004)  Full   EOQ 

Ouyang et al. (2009)     EOQ 

Chen et al.(2014)     EOQ 

Guchhait et al. (2014)  Full   EOQ 

Shastri et al. (2015)  Full  Partial EOQ 

Vandana and Sharma (2016)     EOQ 

Sunil Tiwari (2019)  Partial   EOQ 

This paper  Partial  Partial EOQ 

The literature is complete with papers on permissible delay in payment 

such as Singh et al. [11], Singh and Singh [12], Das et al. [4]. This paper is an 

extension of the previous study by including the following realistic situation: 

(1) a supplier offers trade credit period based on the ordered quantity to the 

retailer (2) effect of inflation. The best refill cycle time and the inventory level 

time to reach zero are obtained. 

2. Notation and Assumptions 

 A Replenishment cost per order. 

C purchasing cost ($/unit). 

P selling price of the product ($/unit), .CP   
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H holding cost ($/unit/year) 

S backordering cost ($/unit/year). 

L goodwill loss when loss of unsatisfied demand ($/unit) interest earned 

($/unit/ year) interest charged ($/unit/ year). 

D the demand rate. The deterioration rate, .10   

M the length of the permissible delay in years offered by the supplier the 

minimum order quantity at which the delay in payments is permitted 

order quantity per order. 

S maximum shortage level the fraction of the total purchase cost which 

payment allowed to be postponed when a vendor order quantity q is fewer 

than the minimum order quantity. Time interval that units are decline to 

zero due to both demand and deterioration quantity of inventory 

(unit/year) at time t. 

r Inflation rate. 

These are the following assumption. 

1. Allows retailers a delay in supplier’s offer partial trade credit even 

though they order less than a prearranged quantity. For this condition the 

retailer will have to pay a portion of the total procure cost immediately, 

where  is the portion of the late payment per order by suppliers, .10   

2. Replenishments are expeditiously and lead time is zero and time 

horizon is infinite. 

3. The stocking structure consists of single items with a constant decline 

rate and demand is constant. 

4. In this paper shortages are allowed which is partial backlogging and 

the backlogging rate exp  ,t  the backlogging parameter  is positive 

constant. 

5. No replacement or repair of decaying goods is made during a given 

cycle. 
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3. Inventory model formulation 

 

Inventory level is  tI  at time ,0t  due to demand and deterioration 

inventory level becomes zero at time ,1t  at this time shortage occur up to 

time T. The rate change of inventory level is governed by the following 

differential equation. 

    11
'
1 0, ttDtItI   (1) 

    0,, 11
'
1   tTttDetI t  (2) 

Solution of equation (1) with the help of boundary condition 

      .0,1 11
1 tte

D
tI

tt






 (3) 

Solution of equation (2) with the help of boundary condition 

    ., 12
1 Tttee

D
tI
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  (4) 

The maximum backorder is given by 

      SqIee
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 11 1  (6) 

The relevant cost parameter for the retailer consists of the following 
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elements. 

1. Ordering cost AOc   

2. Holding cost 
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4. Lost sale cost 
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5. Deterioration cost 
   













 











r

e

r

eeCD
D

rtrtt

c
1111

  

(i) Two cases arise on interest earned and interest pay on the basis of the 

values of q and ,
d

q  (i) dqq   (ii) .dqq   

Case (1) .dqq   At time 0t  the vendor pay to trader  qC 1  

amount and the remaining amount qC  pays the at time M. In this case, 

there arise three subcases depend on the values of Tt ,1  and M. 

(1.1) ,0 1 TtM   (1.2) ,0 1 TMt   (1.3) MTt  10  

Sub-case (1.1) .0 1 TtM   

Since dqq   the vendor has to pays  qC 1  to the supplier inventory 

when the goods are received. Further, as 1tM   the vendor still has some 

inventory on hand, when paying the suppliers remains of the procure cost at 

time M. Interest paid 
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Interest earn continues to accrue at the rate of time commencing between 
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0 to M. 

Interest earned per cycle 
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Subcase (1.3) .0 1 MTt   

In this sub-case, the interest payable and the interest earned are 

identical to subcase 1.2. 

Case (2) .dqq   

Subcase (2.1). .0 1 TtM   

In this case, the retailer has some accumulation even when the seller 

pays the total purchase cost. Therefore interest is paid per cycle 
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Interest paid 0cI  
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Subcase (2.3) .0 1 MTt   

In this sub-case, the interest payable and the interest earned are 

identical to subcase 2.2. 
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4. Model Analysis and Solution Processer 

Now we talk about the hypothetical aspects for each case of the proposed 

inventory model. 

Case 1. In this case, there arise three sub-cases: 

Subcase 1.1. .0 1 TtM   

The essential condition for minimizing the total cost  TtTC ,11.1  are 
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Solving equation (7), 
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Putting these values in equation (8) leads to 
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Again putting Mt 1  in equation (9) 
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Lemma 4.1. 
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(1) If ,01   then the total cost has its minimum value .1 Mt   

(2) If ,01   then the total cost has its minimum value at 

   .,, 11 TMTt   

Proof. It can be easily verified. 

Subcase 1.2. .0 1 TMt   
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Now solving equation (11) for T 
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Again substituting ATt 1  in equation (13), we obtain 



RETAILER’S OPTIMAL ORDERING POLICY FOR … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 1, November 2021 

65 

     

 

     

 
 

  




































































 

















































































































 

































A
rTrM

rTrMA
rT

rTA
e

TTT
P

T
rT

T
rT

TT
rTTr

rTrTT

Tee
r

ee
r

T

r

e
e

r

T
DPi

eeeMDCi

r

e

r
e

rr

e
eLD

r

e

r

e
e

rr
e

sD

r

e

r

eeChD
A

T

A

A
A

A

AA

A
A

A
A

AAA

1

1

1
1

1
1

11

11

1

1

2

2

2
2

2

2

2
2

2

 

   


 



 22

2

1 TrrTT
eee

sD

T
A  

      




 222 1
T

P
rTTr

MeDCieeLD  (14) 

consequently, the following lemma is planned. 

Lemma 4.2. 

(1) If ,0 12   then the total cost has its minimum value 

 .,1 MTt A  

(2) If ,02   then the total cost has its minimum value 

   .,, 21 TTTt A  

3) If ,01   then the total cost has its minimum value at 

   .,, 21 TMTt   

Proof. It can be easily verified. 

Sub-case .0 1 MTt   

In this sub-case, the total cost is identical to the total cost of sub-case 1.2 

Consequently, the following lemma is obtained. 
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Lemma 4.3. 

(1) If ,03   then the total cost has its minimum value Mt 1  

(2) If ,03   then the value of  .,0 ATT   

Proof. It can be easily verified. 

Case 2. ,dqq   there arise three sub-cases: 
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Substituting these value in 16 and putting ATt 1  
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Lemma 4.4. 

(1) If  ,04    then the total cost has its minimum value .1 Mt   

(2) ,04   then the total cost has its minimum value at    11 ,, TTTt A  

Proof. It can be easily verified. 
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Thus, let 
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Again putting Mt 1  and aTt 1  in equation (20), we get 
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consequently, the following lemma is obtained. 

Lemma 4.5. 

(1) If ,0 65   then the total cost has its minimum value 

.1 TMt   

(2) If ,05   then the total cost has its minimum value    .,, 51 TMTt   

(3) If ,06   then the value of  ATMt ,  minimizes  .,12.2 TtTC  

Proof. It can be easily varified. 

Subcase 2.3. .0 1 MTt   

In this sub-case, the total cost is identical to the total cost of subcase-2.2 

and the necessary condition for this subcase is the same as that equations 

(18) and (19). The following theorem is derived, based on lemmas. 

Lemma 4.6. 

(1.) If ,0  then the total cost has its minimum value at .M  

(2.) If ,0  then the total cost has its minimum value at. 

Theorem. The following condition holds for .dqq   

Condition  TtTC ,1
   Tt ,1  

06     min,1  TtTC  

    33.2111.2 ,,, TMTCTtTC  

11 , TTt   or 3T  

0,0 54   

and 06   

  min,1  TtTC  

    412.2211.2 ,,, TtTCTtTC  

11 , TTt   or 4T  

04   and 

07   

  min,1  TtTC  

    313.2111.2 ,,, TtTCTtTC  

11 , TTt   or 3T  
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0,0 54   

and 06   

  min,1  TtTC  

    412.211.2 ,,, TtTCTTTC A  

1TT   or 

04   and 

07   

  min,1  TtTC  

    313.211.2 ,,, TtTCTTTC A  

1TT    or 3T  

Step 1. put the values of all parameters. 

Step 2. Compare between q and dq  if ,dqq   then go to step 3 otherwise 

go to step 4. 

Step 3. Find 21,   and 3  from equations (10), (14) and (18) 

respectively. 

(I) If ,0,0 31   then    TtTCTtTC ,, 11.11   and 1TT   (by 

theorem 1) Otherwise attend step 5. 

(II) If 01   but ,03   then     ,,min, 111.11 TtTCTtTC   

 313.1 ,TtTC  and 1TT   or 3T  (by theorem 1). Otherwise, attend step 5. 

(III) If 0,0 31   but 02   then     ,,min, 212.11 TtTCTtTC   

 313.1 , TtTC  and 1TT   or 3T  (by theorem 1). Otherwise, attend step 5. 

(IV) If ,0,0 32   then     ,,min, 22.11 TTTCTtTC A   313.1 , TtTC  

and 1TT   or 3T  (by theorem 1). Otherwise, attend step 5. 

(V) If 12 ,0   but ,03   then    212.11 ,, TtTCTtTC   and 

2TT   (by theorem 1). Otherwise, attend step 5. 

Step 4. Calculated ,, 54   and 6  from equations (19), (23), (24) 

respectively. 

(1) If ,06   then       33.2111.21 ,,,min, TMTCTtTCTtTC   and 

1TT   or 3T  (by theorem 2). Otherwise, go to step 5. 
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(2) If 0,0 54   and ,06   then     ,,min, 211.21 TtTCTtTC   

 412.2 , TtTC  and 1TT   or 4T  (by theorem 2). Otherwise, attend step 5. 

(3) If 04   but ,06   then     ,,min, 111.21 TtTCTtTC   

 313.2 , TtTC  and 1TT   or 3T  (by theorem 1). If not attend step 5. 

(4) If ,0,,0 654   then       412.211.21 ,,,min, TtTCTTTCTtTC A  

and 1TT   or 4T  (by theorem 2) or else attend step 5. 

(5) If ,0, 64   then       313.211.21 ,,,min, TtTCTTTCTtTC A  and 

1TT   or 3T  [by theorem 2] if not go to step 5. 

Step 5. If the condition is not of the form of the above four cases then 

stop the process and produce the best solution. Similarly, we obtained the 

condition for .dqq   

5. Numerical Analysis 

To describe the process for obtaining the optimal solution, some 

representative examples are solved. 

Example 1. Let 1500D item,/15$,order/120$,year/units  PA  

15.M$10/item,C   r,$/unit/yeas.065,ryears,  ear,$10/unit/yL   

0.0035,h  5.0,5.0   year,/%6,year/%12  eP ii units,300dq  

0.8.  

Sol. We find the optimal solution with the help of mathematica 

,201.297 dqq 
11 19062.0,180584.0,7195.13 TTtS    and 

    .73.1348,, 11.21  TtTCTtTC  

Example 2. Let 1500D item,/15$,order/120$,year/units  PA  

15.M$10/item,C  ear,$10/unit/yLear,$15/unit/ys.065,ryears,     

units,300year,/%6,year/%125.0,5.00.0035,h  deP qii

0.8.  
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Sol. We find the optimal solution with the help of mathematica. 

,973.290 dqq 
11 19162.0,15.0,3205.57 TTtS    and  TtTC ,1

  

  .71.1411,11.2  TtTC  

6. Sensitivity Analysis 

Sensitivity analysis is given w.r.t. some parameters. 

  1t  T TC Q St 

 90 0.15 0.19162 1255.15 290.973 57.3205 

A 120 0.15 0.19162 1411.71 290.973 57.3205 

 150 0.15 0.19162 1568.27 290.973 57.3205 

 180 0.15 0.19162 1724.83 290.973 57.3205 

       

M 10/365 0.15 0.19162 1557.6 290.973 57.3205 

 20/365 0.15 0.19162 1538.71 290.973 57.3205 

 30/365 0.15 0.19162 1519.87 290.973 57.3205 

 40/365 0.15 0.19162 1501.08 290.973 57.3205 

       

 0.4 0.15 0.19162 1319.53 289.208 57.3205 

 0.5 0.15 0.19162 1411.71 290.973 57.3205 

 0.6 0.15 0.19162 1504.82 292.756 57.3205 

 0.7 0.15 0.19162 1598.88 294.558 57.3205 

       

 0.055 0.15 0.19162 1412.47 290.973 57.3205 

r 0.065 0.15 0.19162 1413.71 290.973 57.3205 

 0.075 0.15 0.19162 1414.95 290.973 57.3205 

 0.085 0.15 0.19162 1415.18 290.973 57.3205 

       

 10 0.15 0.19162 1380.83 290.973 57.3205 

s 15 0.15 0.19162 1411.71 290.973 57.3205 
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 20 0.15 0.19162 1442.58 290.973 57.3205 

 25 0.15 0.19162 1473.46 290.973 57.3205 

       

 10 0.15 0.19162 1411.71 290.973 57.325 

C 15 0.15 0.19162 1665.16 290.973 57.325 

 20 0.13668 0.19162 1904.82 288.107 75.9187 

 25 0.121848 0.19162 2089.93 285.229 96.7743 

       

 10 0.15 0.19162 1499.71 290.973 57.3205 

P 15 0.15 0.19162 1473.46 290.973 57.3205 

 20 0.15  0.19162 1447.21 290.973 57.3205 

 25 0.15 0.19162 1420.96 290.973 57.3205 

       

 0.4 0.15 0.19162 1362.48 291.96 58.3077 

 0.5 0.15 0.19162 1411.71 290.973 57.3205 

 0.6 0.15 0.19162 1460.1 290.003 56.3502 

 0.7 0.15 0.19162 1507.6 289.049 55.3964 

From Table 3, It is noted that worth discussing conditions that will bear 

practical effect. Some implications are given below: 

1. An increase in the length of the credit period the total cost  TtTC ,1  

decrease but the most favorable backorder level ,S  the most favorable order 

quantity ,q  the optimal refill cycle time T  and the inventory level time to 

reach zero  1t  remain unchanged. 

2. An increase in the selling price P results in slight changes of the total 

optimal cost  TtTC ,1  decrease but the most favorable backorder level ,S  

the most favorable order quantity ,q  cycle time T  and the inventory level 

time to reach zero  1t  remain unchanged. 
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3. As the unit cost  C  increases than most favorable order quantity q  

and the inventory level time to reach zero  1t  are decrease but the optimal 

replenishment cycle time T  remains unchanged and total optimal cost 

  TtTC ,1  and the most favorable backorder level ,S  are increases. 

4. As the deterioration rate    increases, shortage quantity ,S  cycle  

T  and Inventory level time to reach zero  1t  remain unchanged but the 

total optimal cost   TtTC ,1  and the most favorable order quantity q  are 

increases. 

5. The replenishment cost  A  increases, then the inventory level time to 

reach zero  ,1
t  cycle time ,T  and the most favorable backorder level ,S  

the most favorable order quantity q  remains unchanged but the total 

optimal cost   TtTC ,1  increase. 

6. The partial backlogging parameter    increases, then total optimal 

cost  TtTC ,1  increase but the most favorable backorder level ,S  the most 

favorable order quantity q  are decrease but cycle time T  and the inventory 

level time to reach zero  1t  remain unchanged. 

7. An increase in the shortage cost  ,S  then total cost  TtTC ,1  increase 

but the most favorable backorder level ,S  cycle time ,T  the most favorable 

order quantity q  and the inventory level time to reach zero  1t  remain 

unchanged. 

8. The inflation rate r increases, the total cost  TtTC ,1  increase but the 

most favorable backorder level ,S  the most favorable order quantity ,q  the 

inventory level time to reach zero  1t  and cycle time T  remain unchanged. 

7. Conclusion 

Here, in this paper, we have tried to study a real problem (deterioration, 
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backlogging, and trade credits) in the context of retail sector, where sales 

data is abundant, product challenges exist, and business credit policy 

optimist is not there. In particular, we have built an instructive inventory 

model, in which the characteristics of retail characteristics are described as to 

how better the supply chain can be realized through better information about 

the importance of parameters and the effective effectiveness of the inventory 

coordination. The meaning of this paper is to determine the optimum 

sequence and backlog policies for retailers who want to reduce the total cost 

per unit time. The results show that if the retailer’s order quantity is more 

than the minimum amount, then partial payment delays are allowed. If 

minimum amount    is large, then the retailer will prefer a partial 

permissible delay in payment. The retailer will pay a partial amount on 

receipt of the goods and there will be a grace period for the payment of the 

remaining payments. Apart from this, it was shown that (1) the total cost of 

the retailer increases with the ordering cost; (2) a high reduction cost 

increases the total cost but reduces the level of the back; and (3) the 

expansion of an extended delay leads to a lower total cost. 
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