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Abstract 

Let R be a finite commutative ring with unity and rMMM ,,, 21   be the maximal ideals 

of R. The product maximal graph whose vertices are all the elements of R and two different 

vertices x and y are adjacent if and only if the product .,,2,1, riMxy i   In this paper, the 

concept of rank, girth, domination, coloring, connectivity, planarity, Hamiltonian of the product 

maximal graph are interpreted. Moreover, some topological indices using resistance distance 

matrix for  Rpm  are explored. 

1. Introduction 

Associating a graph with algebraic properties is an active research focus 

in algebraic graph theory and has concerned considerable attention. This is 

an area of mathematics in which methods of abstract algebra are employed in 

studying various graph invariants and tools in graph theory. For further 

notations we follow Dummit and Foote [3] for algebra and Frank Haray [5] 

for graph theory. 

In 1988, being the first to associate a graph to a ring. Beck [1] introduced 

and studied the zero divisor graph of a commutative ring R. This graph turns 

out to best exhibit the properties of the set of zero-divisors and other related 

properties of a commutative ring. The zero-divisor graph translate the 



D. KALAMANI and G. RAMYA 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3214 

algebraic properties of a ring to graph theoretical tools, thus help in exploring 

interesting results in both graph theory and abstract algebra. Since then the 

zero divisor graph as well as many other graphs associated with rings have 

been extensively studied.  

The spectral graph theory is the study of the eigenvalues of different 

matrices associated with graphs. The spectrum of the adjacency matrix can 

tell us the number of vertices, the number of edges and the number of closed 

walks of any length. It can also tell us whether or not a graph is bipartite, 

regular and, if it is regular, whether or not it is connected and what its girth 

is. The spectrum of the Laplacian matrix of a graph determines the number of 

vertices, the number of edges, the number of connected components and 

spanning trees as well as whether the graph is regular, and if it is regular, its 

girth. Graph properties such as diameter, chromatic number, independence 

number, clique number and connectivity are all related to a graph‟s spectrum 

too. For an arbitrary graph G, a subset  GVS   is said to be a cut-set if 

there exist distinct vertices u and   SGVv   such that every path in G 

from u and v involves at least one element of S. A cut-set of minimum 

cardinality is called a minimum cut-set of G and the cardinality of minimum 

cut-set is called the vertex connectivity of G, denoted by  .G   

Domination is most prominent area of graph theory. The course of 

domination was inducted by Ore and Claud Berge. A broad introduction to 

“Domination in graph” by Haynes, Hedetniemi and Slate. The generalized k-

connectivity  Gk  of a graph G was introduced by Chartrand et al. in 1984. 

The connectivity is one of the most basic concepts of graph-theoretic subjects, 

both in a combinatorial sense and an algorithmic sense. Graph connectivity 

theory are essential in network applications, routing transportation network, 

network tolerance etc., Graph coloring is a special case of graph labeling [10] 

it is assignment of labels traditionally called „colors‟ to elements of a graph 

subject to certain constraints. In its simplest form, it is a way of coloring 

vertices of a graph such that no two adjacent vertices are of the same color; 

this is called vertex coloring. Similarly, an edge coloring assigns a color to 

each edge so that no two adjacent edges are of the same color. 

A graph G is said to be planar if it can be drawn in the plane so that no 

two edges of G intersect at a point other than a vertex. Such a drawing of a 
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planar graph is called a planar embedding of the graph. A Hamiltonian graph 

may be defined as: if there exists a closed walk in the connected graph that 

visits every vertex of the graph exactly once without repeating edges, then 

such a graph is called Hamiltonian graph. 

The distance matrix is one of the matrix representations of graphs in 

algebraic graph theory. It is defined in a similar way as the adjacency matrix. 

The distance matrix has several applications not only in telecommunication, 

but also in chemistry. Several topological indices [6, 8, 9], which characterise 

the molecular graph of chemical compounds, have been derived from the 

study of the distance matrix. The concept of resistance distance originated 

from electrical circuit theory. If we view G as an electrical network N by 

replacing each edge of G with unit resistors. Then the resistance distance 

between iv  and jv  denoted by ,ij  is defined as the net effective resistance 

between the corresponding nodes in the electrical networks N.  

The resistance distance matrix was introduced in 1993 by Klein and 

Randic [4]. They used from concept from the theory of resistive electrical 

networks (Kirchhoff‟s law) and the theory of graphs. A merging of concepts 

from these two theories was achieved by viewing an electrical network as a 

connected graph, such that the vertices of the graph corresponds to the 

junctions in the electrical network and the edges of the graph to unit 

resistors. Then the effective resistance between pairs of vertices is a graphical 

distance. 

This paper concerned the product maximal graph. In 2021, the product 

maximal graph was established by D. Kalamani and G. Ramya [7] for the 

finite commutative ring with unity. In [11], they describe the domination 

number for the product maximal graph.  

In this present report we describe the Weiner index [2], Hyper Weiner 

index, Resistance distance matrix [12], Kirchhoff‟s index, Kirchhoff‟s sum 

index for the product maximal graph. Also we discussed properties like rank, 

nullity, girth, connectivity, planarity, Hamiltonian and edge domination 

number for the product maximal graph. 
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2. Preliminaries 

In this section, the essential definitions of the domination, coloring, 

connectivity, rank, nullity, girth, resistance distance and some topological 

indices are specified. 

Definition 2.1. The rank of a graph G, denoted by  ,G  is the number of 

non-zero eigenvalues of the adjacency matrix A of the graph G. The nullity of 

a graph is defined as the multiplicity of the eigenvalue zero in the spectrum 

of the adjacency matrix of the graph. It is denoted as  .G  Consider A be a 

real and symmetric matrix then,    .dim AAA    

Definition 2.2. The girth of a graph G, denoted by  GGirth  is the length 

of a shortest cycle in G. 

Definition 2.3. A set of edges D of  EVG ,  is called an edge dominating 

set if every edge of DE   is adjacent to an element of D. The minimum 

cardinality of an edge dominating set is called an edge domination number 

and it is denoted by  .G   

Definition 2.4. For 1k  an integer, a k-fair dominating set, 

abbreviated kFD-set is a dominating set D such that   kDvN   for 

every vertex v in DV   where  vN  is the open neighbourhood of v. The 

minimum cardinality of the k-fair dominating set is called k-fair dominating 

number and it is denoted by   .RpmkFD    

Definition 2.5. A dominating set D of a graph is said to be an annihilator 

dominating set, if its induced subgraph DV   is a graph containing only 

isolated vertices. The minimum cardinality of an annihilator dominating set 

is called an annihilator domination number. 

Definition 2.6. The chromatic index of a graph is the minimum number 

of colors needed to color the edges of graphs so that no two adjacent edges 

share the same color. It is denoted by  .G  

Definition 2.7. The (vertex) connectivity  G  of an undirected graph or 

digraph is the smallest number of vertices whose deletion separates or 

trivializes the graph. The minimum number of edges whose removal makes G 

disconnected is called edge connectivity  G  of G. 
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Definition 2.8. A connected graph G is called Hamiltonian graph if there 

is a cycle which includes every vertex of G and the cycle is called Hamiltonian 

cycle. 

Definition 2.9. Suppose G is a connected graph with the set of vertices 

   nvvvGV ,,, 21   and ijd  represent the length of the shortest path 

between iv  and .jv  Then the distance matrix of G, denoted by  ,GD  as an 

nn   matrix whose  ji, th entry is .ijd  It is real symmetric and also has 

trace equal to zero. 

Definition 2.10. The Wiener index of a graph  ,, EVG   denoted by 

 ,GW  was introduced in 1947 by chemist Harold Wiener as the sum of 

distances between all vertices of G. 
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Definition 2.11. The resistance distance between vertices i and j, 

denoted by ,ij  is defined to be the effective electrical resistance between 

them if each edge of G is replaced by a unit resistor. A famous distance-based 

topological index as the Kirchhoff index, 
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is defined as the sum of resistance distances between all pairs of vertices in 

G. 

Definition 2.12. The Kirchhoff sum index of a graph G is defined as 
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where ij  is an elements in resistance distance matrix and ijd  is an 

elements of distance matrix. 

3. Product Maximal Graph 

In this section, we attempt an enormous result for the product maximal 

graph. Throughout this paper, n is the number of vertices, m is the number of 

elements in M. The product maximal graph is a connected graph with n 

vertices and  mnmmC 2  edges. We begin with our definition of the 

product maximal graph. 

Definition 3.1 [7]. The Product maximal graph of a commutative ring R 

is abbreviated as  Rpm  where R be the finite commutative ring with 

1(identity). Let rMMM ,,, 21   be the maximal-ideals of R. The product 

maximal graph whose vertices are all the elements of R and two different 

vertices x and y are adjacent if and only if the product ,iMxy    

.,,2,1 ri   

3.1. Rank, Nullity and Girth of the product maximal graph 

In this section, we have discussed rank using characteristics polynomial, 

nullity and also girth of the product maximal graph. 

Theorem 3.1. Let R be the finite commutative ring with unity. Then the 

rank of  Rpm  is    1 mRpm  where m is the number of elements in 


r

i iMM
1

  and iM ‟s are the maximal ideal. 

Proof. Let  Rpm  be the product maximal graph with n vertices. Then 

the adjacency matrix  ijaA   of  Rpm  is the real symmetric matrix where 

.,1,
otherwise0

fororif1
nji

jiMvMv
a ji

ij 


 

  

One of the eigenvalue of A is zero, since A is singular. 

So,    .nRpm   

Next we find the remaining  1n  eigenvalues of the adjacency matrix A 

of  .Rpm   
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The characteristic equation of the product maximal graph is 

0 IA  where  is the eigenvalues of A and I is the nth order unit 

matrix. 

On expanding the above determinant, we get 

  .012
2

1
1  

n
nnnn kkk   

where ik  is the sum of the minors of  in   diagonal elements, 11  ni  

and .Akn    

For the adjacency matrix A of the product maximal graph, 

0,01  Akk n  

1,0  miki  

    .01 13
3

2
2   mnnnn mkkk   

Solving the characteristic equation, it is clear that, there are 1m  

number of non-zero eigenvalues of  .Rpm  

Hence the rank of the matrix A is .1m  This means that the rank of the 

product maximal graph    .1 mRpm  □  

The result established in theorem 3.1 can be generalized the nullity of the 

product maximal graph. 

Corollary 3.2. The nullity of the product maximal graph  Rpm  is 

   .1 mnRpm   

Proof. From theorem 3.1, the number of nonzero eigenvalue of  Rpm  is 

.1m  Therefore, the number of zero eigenvalues of  Rpm  is .1 mn  □ 

For instance, the rank of the product maximal graph is    46  Zpm  

and nullity is    59  Zpm  from figure 1. 

Theorem 3.3. For the product maximal graph,    .3 RGirth pm   

Proof. The girth of the complete graph nK  is 3 for all .3n  
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In the product maximal graph, the vertices which are in the maximal 

ideals form the complete subgraph. 

Therefore    .3 RGirth pm  □ 

 

Figure 1. Product maximal graph  .9Zpm  

3.2 Dominations for the product maximal graph 

In this section, we explored some properties of dominations of the product 

maximal graph. In [11], they investigated the domination number and some 

parameters of the product maximal graph. Initially, we show that the edge 

domination number of  .Rpm  

Theorem 3.4. Let R be a finite commutative ring with unity and 

rMMM ,,, 21   be the maximal ideals of R. Then the edge domination for 

the product maximal graph  Rpm  is  
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m
 

Proof. Let   RV pm  and   RE pm  be the vertex set and edge set of 

the product maximal graph respectively. 

Let 1E  be the set of edges whose both end vertices are in maximal ideals. 

Therefore .21 mCE    
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Let 2E  be the set of edges whose one end vertex in maximal ideal and 

other end is not in maximal ideals. Therefore  .2 mnmE   

Let 3E  be the set of edges whose both end vertices which are not in 

maximal ideals. Obviously the element which are not in maximal ideals form 

the co-clique. Therefore .03 E   

Let D be the non-empty subset of the edge set of the product maximal 

graph.  

Claim: D is the edge dominating set. 

Case 1. Let 1ED    

Then the subgraph    DRE pm   whose edges are all the neighbour of 

D. Thus D is the edge dominating set. Therefore the number of dominating 

set in 1E  is 





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
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2

2

2

mmCD
m
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m

 (1) 

Case 2. Let 2ED   

Then the subgraph    DRE pm   whose edges are all the neighbour of 

D. Thus D is the edge dominating set. Therefore the number of dominating 

set in 2E  is 

 

 









evenisif,
2

oddisif,

mmnmD
m
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 (2) 

Case 3. Let 21 EED    

Then the subgraph    DRE pm   edges are all the neighbour of D. Thus 

D is the edge dominating set. 

 mnmmCD  2   (3) 

From (1), (2) and (3), we get 
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The minimum cardinality of the edge dominating set is 

  
















oddis,
2

evenis,
2

m
m

m
m

Rpm  □ 

For example, in figure 1, the edge domination number for the product 

maximal graph    .29  Zpm  

The following results are the parameter of the vertex domination of the 

product maximal graph. 

Here M  is the number of elements which are not in maximal ideals.  

Theorem 3.5. If  Rpm  is the product maximal graph, then the k-fair 

domination number for  Rpm  is  

  









MMmn

MMm
RpmkFD

if,

if,
 

Proof. Let D be the dominating set of  .Rpm  We prove that the 

dominating set D is the k-fair dominating set. 

By [11], the set of all elements which are in the maximal ideals is the 

connected dominating set. Also, the elements which are not in maximal ideals 

is an independent dominating set. 

If ,MD   then   mDvN   for every vertex v in    .DRV pm    

If ,MD   then   mnDvN   for every vertex v in 

   .DRV pm   

It concludes that, the minimum cardinality of the k-fair dominating set 

depends upon the number of elements which are in the maximal ideals and 

the non-maximal ideals. 

Therefore,   









MMmn

MMm
RpmkFD

if,

if,
  □ 

For instance, the k-fair domination number for  9Zpm  is 3 from figure 

1. 
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Theorem 3.6. Let R be a finite commutative ring with unity, then the 

annihilator domination number of the product maximal graph is 

   .mRpma    

Proof. Assume that  Rpm  be the product maximal graph, then by [7] it 

contains complete subgraph mK  and an independent subgraph .mnI    

Let D be the dominating set of  .Rpm   

Claim: D is an annihilator dominating set. 

If ,MD   then the induced subgraph    DRV pm   of  Rpm  is a 

graph with isolated vertices. 

Therefore, the minimum cardinality of an annihilator dominating set is 

the annihilator domination number. 

   .mRpma   □ 

For example, the annihilator domination number of the product maximal 

graph is    39  Zpma  from figure 1. 

3.3 Coloring, connectivity of the product maximal graph 

In this section, we find the edge coloring and connectivity of the product 

maximal graph. 

Generally, the chromatic index for complete graph nK  is either 1n  if n 

is even or n if n is odd. Also the chromatic index for complete bipartite 

 .,max, nmK nm   Based on this, we prove that the chromatic index of 

 .Rpm  

Theorem 3.7. Let  Rpm  be the product maximal graph of a finite 

commutative ring, then the chromatic index  

   .
  ,12

,








is evenmifm

oddismifn
Rpm  

Proof. Let n be the number of vertices in  Rpm  and m be the number 

of elements in 
r

i iMM
1

  where iM ‟s are the maximal ideals. 
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Let 1E  and 2E  be the set of edges which is defined in theorem 3.3 (edge 

domination theorem) Then the set of edges 1E  form a complete subgraph, so 

we can color the edges of 1E  with either m colors if m is odd or 1m  colors 

if m is even (1) 

Next, the set of edges 2E  form a complete bipartite subgraph, therefore 

we can color the edges of 2E  with  mnm ,max  colors (2) 

From (1) and (2), we get 

The chromatic index of the product maximal graph  Rpm  is 

   .
even is  if,12

oddisif,








mm

mn
Rpm  □ 

 

Figure 2. Edge coloring for the product maximal graph  .6Zpm   

For example, in figure 2, the chromatic index for the product maximal 

graph    .76  Zpm  By removing the centre of the graph we get the vertex 

connectivity whose vertices are the minimum eccentricity. 

Theorem 3.8. The vertex connectivity of the product maximal graph is 

   mRpm   where .Mm   

Proof. If nvvv ,,, 21   are the vertices of the product maximal graph, 

then the eccentricity of iv  to all the other vertices is  

 









Mvif

Mvif
vecc

i

i
i

,2

,1
 

We know that the centre of the product maximal graph is the set of all 
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vertices whose eccentricity is minimum. It is clear that the centre 

   .mRZ pm   

Now we have the centre of the graph as the set in which every vertex is 

adjacent to all the other vertices in the graph. 

If we delete the centre of  ,Rpm  then the graph is disconnected with 

 mn  -components. 

Therefore the vertex connectivity of the product maximal graph  Rpm  

is the number of vertices in the centre of  .Rpm  

   mRpm   where m is the cardinality of M. □ 

For example, the vertex connectivity of the product maximal graph 

 9Zpm  is 3 from figure 1. The following result called the edge connectivity 

of the product maximal graph. 

Theorem 3.9. The edge connectivity of the product maximal graph is 

   .mRpm    

Proof. The vertex set of the product maximal graph is    .nRV pm   

Let u and v be any two vertices in  .Rpm  Since the product maximal graph 

contains complete subgraph with the elements of maximal ideal M whose 

degree is 1n  and co-clique with the elements of non-maximal ideal M  

whose degree is m. 

If we remove the 1n  edges with respect to a fixed vertex ,Mu   the 

graph becomes disconnected as u become isolated. 

Also, if we remove the m edges with respect to a fixed vertex ,Mv   the 

graph becomes disconnected as v become isolated. 

Thus the minimum number of edges to be deleted is m. 

Hence the edge connectivity of  Rpm  is    .mRpm    

Since    ,mRpm   the product maximal graph  Rpm  is m-edge 

connected. □ 
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In particular, the edge connectivity of the product maximal graph is 

   39  Zpm  by figure 1. By observing theorems 3.7 and 3.8, we conclude 

that the vertex connectivity is same as the edge connectivity of the product 

maximal graph       .mRR pmpm    

Theorem 3.10. The minimum degree of the product maximal graph 

 Rpm  is equal to its vertex connectivity and edge connectivity. Therefore 

         .mRRR pmpmpm    

Proof. The degree of the product maximal graph is already proved in [7] 

that  

 









riMvm

riMvn
v

i

i

,,2,1,if,

,,2,1,if,1
deg




 

where m is the number of elements in maximal ideals and n is the number of 

vertices in  .Rpm  

By theorems 3.7 and 3.8,       .mRR pmpm    

Hence          .mRRR pmpmpm   □ 

3.4 Planarity and Hamiltonian of the product maximal graph 

In this section, the product maximal graph that can be drawn in a plane 

without any line crossing and proved that the graph  Rpm  is Hamiltonian. 

Theorem 3.11. Let R be a finite commutative ring with unity. Then the 

product maximal graph is planar if .4n   

Proof. Let R be a finite commutative ring with unity. We know that the 

size of the product maximal graph is  ,2 mnmmC   so that the graph 

contains complete sub graph. 

Claim:  Rpm  is planar. 

If ,4n  then the complete subgraph is more than .4K  Also each 

independent vertex is adjacent to all the vertices in the complete subgraph. 

So, it is not possible to draw the edges without intersect. Therefore,  Rpm  

is planar if .4n  □ 
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Theorem 3.12. If  Rpm  is the product maximal graph then  Rpm  is 

Hamiltonian if .MM    

Proof. Let R be the finite commutative ring with unity and 

rMMM ,,, 21   be the maximal ideals of R. 

By [7], the graph  Rpm  can be split into two subgraphs namely 

complete subgraph mK  whose vertices are in maximal ideal 

riMi ,,2,1,   and an independent subgraph mnI   whose vertices are 

not in maximal ideals. 

If ,MM   then there is no cycle which includes every vertex of 

 .Rpm  Therefore,  Rpm  is Hamiltonian if .MM   □ 

4. Distance Based Topological Indices for the Product  

Maximal Graph 

A numerical value related to a graph that is invariant under graph 

automorphism is a topological index. The Wiener index is one of the most 

studied topological indices, both from a theoretical point of view and 

applications. This index was the first topological index to be used in 

chemistry. The following theorem based on topological indices using distance 

of vertices for  .Rpm   

Theorem 4.1. The wiener index for the product maximal graph is 

      .12  nmnmCRW pm   

Proof. Let R be a finite commutative ring with unity. Let n be the 

number of vertices of the product maximal graph and m be the number of 

elements in the maximal ideals of R. In  ,Rpm  the distance matrix 

    ijpm dRD   is the real symmetric matrix where  















otherwise,0

,,1,andif,2

orif,1

njiMvv

Mvv

d ji

ji

ij   

The wiener index of  Rpm  is  
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   
 



n

i

n

j

ijpm dRW

1 1
2

1
 

      1222
2

1
2  mnmnmnmmC  

   12  nmnmC  □ 

For example, the wiener index of the product maximal graph  6Zpm  is 

   166  ZW pm  by figure 2. The result of the theorem 4.1 can be speculate 

the hyper-Weiner index for  .Rpm   

Theorem 4.2. The hyper wiener index of the product maximal graph is 

       .122 mnmnmCRWW pm     

Proof. The distance matrix of  Rpm  is  ijd  which is defined in the 

theorem 4.1. Then the hyper Wiener index is 

    
 



n

i

n

j

ijijpm ddRWW

1 1

2

2

1
 

      1422
2

1
2  mnmnmnmmC  

   12  nmnmC  □ 

For example, the hyper wiener index of the product maximal graph 

 6Zpm  is    .186  ZWW pm  The famous resistance distance based 

topological indices as the Kirchhoff index. The following theorem shows the 

Kirchhoff index for  .Rpm  In [12], they discussed some relation between 

resistance and Laplacian matrices. 

Theorem 4.3. The Kirchhoff‟s index for the product maximal graph of the 

finite commutative ring with unity is      .2
1

2 mnmC
m

RKf pm    

Proof. For the product maximal graph, the Laplacian matrix is 

        RARDegRL pmpmpm   where   RDeg pm  is the degree 

matrix and   RA pm  is the adjacency matrix.  
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By [7], the degree matrix     ijpm RDeg deg  where 

















ji

jiMvm

jiMvn

j

i

ij

 if,0

andif,

andif,1

deg  where nji  ,1   

where m and n are the cardinalities of M and R respectively. 

Also by theorem 3.1, the adjacency matrix     ijpm aRA   where  

.,1,
otherwise,0

andorif,1
nji

jiMvMv
a ji

ij 


 

  

Therefore, the Laplacian matrix      jiLRL pm ,  where 

  njijivv

ji

jiL jj

ij














 ,1

otherwise,0

andtojacentadis if,1

if,deg

,  

The resistance distance from the vertex iv  to jv  become 

 
 iiL

jiL
ij ,det

,det
  

where  jiL ,det  is to deleting the ith row and column and jth row and 

column.  iiL ,det  is to delete the ith row and column. 

So we get the resistance distance matrix for the product maximal graph 

    ijpm RW   where 
























otherwise,0

orif,
1

,if,
2

,if,
2

Mvv
nm

mn

Mvv
nm

m

Mvv
nm

n

ji

ji

ji

ij  

Now the Kirchhoff‟s index for the product maximal graph  Rpm  

 
 



n

i

n

j

ijKf

1 1
2

1
 



D. KALAMANI and G. RAMYA 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3230 

              mnmmnmmmmnmnn
nm

 211212
2

1
 

  mnmC  22
2

1
 □ 

For example, the Kirchhoff‟s index of the product maximal graph  Rpm  

of the finite commutative ring with unity is   
2

11
6  ZKf pm  from figure 2. 

The following statement is the Kirchhoff‟s sum index for  Rpm  by 

applying both distance and resistance distance matrix. 

Theorem 4.4. The Kirchhoff’s sum index for the product maximal graph 

    .
1

22 mCnC
m

RKSf pm    

Proof. By theorem 4.1 and theorem 4.3, we can find the distance matrix 

and resistance distance matrix. So the Kirchhoff‟s sum index for  Rpm   


 



n

i

n

j

ijij DKSf

1 1
2

1
 

          mnmmnmn
n

mm
nm

 21
2

2
12

2

1 2  

 232

2

1
nnnmnm   

 22
1

mCnC
m

  □ 

For example, The Kirchhoff‟s Sum index of the product maximal graph 

 6Zpm  is   
4

9
6  ZKSf pm  from figure 2. 

Conclusion 

In this paper, we begin with the definition of the product maximal graph, 

then we analyse some aspects of  .Rpm  Initially, some algebraic invariants 

such as rank, nullity, girth are explored. Subsequently, domination for the 
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graph are discussed especially edge dominating set, k-fair dominating set and 

annihilator dominating set. In addition, we found coloring and connectivity 

for  .Rpm  Furthermore, planar and Hamiltonian are interpreted. Finally, 

the topological indices using electrical network theory as the application for 

the product maximal graph are discussed. 

References 

 [1] I. Beck, Coloring of commutative rings, Journal of Algebra 116(1) (1988), 208-226. 

 [2] D. Babic, D. J. Klein, I. Lukovits, S. Nikolic and N. Trinajstic, Resistance-distance 

matrix: a computational algorithm and its application, International Journal of 

Quantum Chemistry 90 (2002), 166-176. 

 [3] David S. Dummit and Richard M. Foote, Abstract Algebra, John Wiley and Sons Inc, 

Third Edition, (2004). 

 [4] Douglas Klein and Milan Randic, Resistance distance, Journal of Mathematical 

Chemistry 12(1) (1993), 81-95. 

 [5] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972). 

 [6] D. Kalamani and G. Kiruthika, Subdivision vertex corona and subdivision vertex 

neighbourhood corona of cyclic graphs, Advances in Mathematics: Scientific journal 9 

(2020), 607-617. 

 [7] D. Kalamani and G. Ramya, Product maximal graph of a finite commutative ring, 

Bulletin of Calcutta mathematical society 113(2) (2021), 127-134. 

 [8] G. Kiruthika and D. Kalamani, Computational Zagreb indices of k-gamma graphs, 

International Journal of Research in Advent Technology 7(5) (2019), 413-417. 

 [9] G. Kiruthika and D. Kalamani, Degree based partition of the power graphs of a finite 

abelian group Malaya Journal of Matematik (1) (2020), 66-71. 

 [10] G. Ramya and D. Kalamani, Some cordial labelling for commuting graph of a subset of 

the dihedral group, Malaya Journal of Matematik 9(1) (2021), 461-464. 

 [11] G. Ramya and D. Kalamani, Domination number of the product maximal graph of the 

finite commutative ring, Southeast Asian Journal Mathematics and Mathematical 

Sciences, Accepted. 

 [12] Wenjun Xiao and Ivan Gutman, Relations between resistance and Laplacian matrices 

and their applications, MATCH Communications in Mathematical and in Computer 

Chemistry 51 (2004), 119-127. 


