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Abstract 

Jatropha Curcas is very much essential plant for ecological as well as environmental 

purpose. The seeds of the plant contain 37% of oil that can be used to obtain a better quality of 

biodiesel which is very useful as an alternative fuel. But such an important plant is affected by 

the Mosaic virus (Begomovirus) through the vector whitefly (Bemisia tabaci) which causes 

mosaic disease. In this paper we propose a model for the dynamics of this disease and its 

possible control via insecticide spraying. The result shows that the system possesses a steady 

state for some parameter values, Hopf bifurcation for some other parameter values and 

unstable condition for some other parameter values. Pontryagin minimum principle is applied 

to minimize the cost of spraying. 

1. Introduction 

The genus Jatropha of family Euphorbiaceae has more than 400 species 

distributed worldwide and among them Jatropha Curcas is recorded from 

India. It is commonly known as physic or purging nut. The seeds of this plant 

produce biodiesel which is an efficient substitute fuel for diesel engine. It is 

also an essential ingredient in various soap, dye and wood industries [6]. 

Jatropha Curcas is semi evergreen shrub or small tree with large green to 

pale green leaves. 

It grows between (3-5) meter in height but grows upto (8-10) meter under 

favourable conditions. It is a multipurpose and drought resistant crop which 

is grown in marginal lands with lesser input. The tree can be grown in dry 
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and infertile conditions and cultivated in rough, sandy and salty soils. Fruits 

are produced in winter but can produce several crops during the year if the 

soil moisture is good and temperature is sufficiently high [8]. 

Begomovirus affects the Jatropha curcas plant by the vector whitefly 

which results mosaic disease. The symptoms that occur for this disease are 

severe mosaic, mottling, blistering of leaves, yellowing of leaves, reduced leaf 

size, stunting of the diseased plant. In this disease the mosaic virus passes 

from an infected whitefly to a susceptible plant and vice-versa [2][3]. Plant 

density is a key factor for the spreading of the virus. Normally the whitefly 

needs 3 hours feeding time to procure the virus and a latent phase of 8 years 

and also requires 10 minutes time to contaminate the young leaves [5][9]. 

Symptoms occur after 3-5 weeks. In this paper our objective is to understand 

the dynamics of the model regarding Jatropha Curcas plant and whitefly 

interaction and also the way of controlling such disease. 

2. Statement of the Model 

In our model the mosaic virus (Begomovirus) which is responsible for the 

disease is taken implicitly by considering its vector whiteflies. The vector can 

be controlled by removing infected plant biomass, spraying insecticide etc. 

Here growth of the plant is considered in logistic form and the attack pattern 

is taken as type-II function. Here ‘x’ denotes the Jatropha Curcas plant 

population and ’v’ denotes the whitefly population. ‘k’ is the carrying capacity, 

‘r’ is the growth rate of the plant. 

The loss of whiteflies occur in the following ways. 

d = natural mortality of whitefly. 

e = natural mortality of the host plant. 

f = by their killing the host plant. 

Based on the above assumptions the model takes the form. 

3. Model 

xa

cxv

k

x
rx

dt

dx










  1  
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 





 


 fde
xa

cx
v

dt

dv
 (1) 

with the initial conditions, 

    00,00 00  vvxx  

Here 0x  is the initial plant population density and 0v  is the initial 

whitefly density. 

For mathematical simplicity we consider the following transformation, 

.,,
r

tavvaXx


  

The transformed equations are, 

 
X

XV
XX

d

dx






 1
 














 X

X
V

d

dV

1
 (2) 

where 
 

.,,
ra

fed

ra

ck

a

k 
  

3.1 Solution properties 

3.1.1 Lemma 1. The solutions of (2) are positive. 

Proof. Since   00 0  xx  and   ,00 0  vv  we have   00 0  XX  

and   .00 0  VV  Suppose  X  is not positive for all .0  Since 00 X  

then there exist 0  with   00 X  and   0X  for .0 0  For 

  0X  

 
  X

V
X

X

V
X

X

X















11


 

    01
2

exp
0

0

2
0

00 














 



dXVXX  

This is a contradiction and hence  X  is positive for all .0  Similarly 

it can be shown that  V  is also positive for all .0  
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3.2 Equilibria. The equilibrium points are obtained by setting 0
d

dX
 

and 0
d

dV
 and solving the equations   0

1







X

XV
XX  and 

.0
1





V

X

XV
 

We have seen that there are three equilibrium points i.e. 

   0,,0,0 10 EE  which is the whitefly free equilibrium,   VXE ,2  which 

is the interior equilibrium. From the two equations we obtain 




X  

 2


V  

Clearly   VXE ,2  is feasible if .0



  

3.3 Stability. From the variational matrix we obtain the behavior of 

different equilibrium points of the system. 

The equilibrium  0,00E  is saddle as its eigen values are  and-. 

The eigen values of  0,1 E  are 





1
,  

Therefore if 0
1





 then  0,1 E  becomes saddle, in this case 

  VXE ,2  exists. But if 0
1





 then  0,1 E  becomes stable and in 

this case   VXE ,2  does not exists. The characteristic equation for 

  VXE ,2  is a quadratic equation which is as follows, 

   
0

11
2

3

2

2

2 






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





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




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






X

VX

X

V
X  

which can be written as 

02  BA  
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where, 

 21 









X

VX
XA  and 

 
0

1
3

2











X

VX
B  A can be 0  equal to 0 or 

.0   

Therefore if 0A  then 
 

0
1

1
2











X

V
 i.e. 




 

If ,0A  then 



 and if ,0A  then 




 

3.3.1 Theorem 1. If 



 and 




  then the system (2) is 

globally asymptotically stable. 

Proof. If possible, let Γ be any periodic orbit around   VXE ,2  in the 

positive XV-plane. Then, 

 


 dVXdiv  ,  

   




















 d

X

X

X

V
X

11
2

2
 

   



















 d

X

V
X

X

V
2

11
 

 
 













 d  

Under the given assumption   VXE ,2  is locally stable. Thus .0  

Then by Poincare criteria any periodic orbit Γ in the positive XV plane is 

stable, leads to a contradiction. Therefore, there is no periodic orbit around 

  VXE ,2  in the positive XV plane and thus   VXE ,2  is a global 

attractor. This completes the proof of the theorem. 

3.3.2 Theorem 2. If 



 and 




  then the system (2) leads 
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to small amplitude Hopf bifurcating periodic solutions near .2E  

Proof. To prove this theorem we have to satisfy all the conditions for 

Hopf bifurcation. If 



 then the two roots of the characteristic 

equation 02  BA  are purely imaginary namely ;i  

where 
 

.
14

3

2
2

X

XV




  

The necessary and sufficient condition for Hopf bifurcation to occur is 

that there exist a   such that 

(i) 



 and 

(ii) 
 

0
Real






d

d
 

Now we have 

 
0|

1
2































d

X

VX
Xd

 

Hence all the conditions for a Hopf bifurcation are satisfied. Then there 

exists small amplitude Hopf bifurcating periodic solutions near .2E  This 

completes the proof of the theorem. 

3.3.3 Theorem 3. If 



 and 




  then there exists at least 

one stable limit cycle around   VXE ,2  in the positive XV plane. 

Proof. If possible, let Γ be any periodic orbit around 2E  in the positive 

XV plane. Then 

 


 dVXdiv  ,  
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   


























 d

X

X

X

V
X

11
2

2
 

 
 














 d  

So, we can conclude that 0  if .



 Hence by Poincare criteria 

any periodic orbit is stable. Therefore there exists at least one stable limit 

cycle around   VXE ,2  in the positive XV plane. 

4. Persistence and Permanence of the System 

The idea of persistence was first came to the light by Freedman and 

Waltman. From the biological point of view persistence implies that all the 

populations are present and none of them will become extinct. Persistence 

and permanence are very useful to decide the questions of survival and 

extinction of n-species whose growth equations are governed by the 

differential equations 

 niii xxxfxx ,,, 21     (3) 

4.1 Some definitions 

(1) The system is said to be weakly persistent if   0suplim txi  for all 

orbits in n
int  and strongly persistent if   .0inflim txi  

(2) The system is said to be permanent if there exists a compact set 

nB  int  such that all orbits in n
int  end up in B. 

(3) The system is uniformly persistence if there exist 0  such that for 

each compact set   0inflim, txx ii  for all       txtxtx n,,, 21   

  .int ntX    

(4) An equilibrium fixed point x  is said to be saturated equilibrium if 

0
ix  then   .0,, 21 

ni xxxf   
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With the concept of saturated equilibria and by the method of average 

Lyapunov function we have the following theorem for permanent coexistence 

of both the species of the system [4]. 

4.2 Theorem. The system is permanent iff .



  

Proof. The index theorem states that the system with dissipativeness 

assumption has at least one saturated equilibrium. If all these saturated 

equilibria are regular, then the sum of their indices is .1  From the theorem 

1 the system is dissipative and so there exists at least one saturated 

equilibrium and the sum of their indices is 1  if they are regular. The 

permanence of the system implies that none of the boundary fixed points are 

saturated. Hence the interior fixed point exists and must be saturated. Hence 

all the eigen values are negative or have negative real parts. 

We now construct the average Lyapunov function to prove the sufficient 

condition. In our model, we consider the average Lyapunov function as 

  21 rr
VXX   where .2,10  iri  

Let,  
 
 X

X
X







  

V

V
r

X

X
r


21   

    























X

X
r

X

V
Xr

11 21  

If   0X  for the -limit sets of trajectories initiated in ,3
  then the 

trajectories more away from the boundary and the system (2) is permanent. It 

is evident that there is no periodic trajectory. Hence if there exist 01 r  such 

that   ,01  E  then (2) is permanent. 

Therefore for     0,0,0 210  rrXE   

    0
1

,0, 21 












 rXE   

The inequalities are evidently satisfied for at least one positive 
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 21, rrr   if .



  Hence the system is uniformly persistent (or 

permanent) if .



  

This completes the proof of the theorem. 

5. The Optimal Control Problem 

We now reformulate the model as an optimal control problem to minimize 

the costs of insecticide spraying. The migration of infected whiteflies are not 

considered. Assuming that all the infected vectors are under the control of 

insecticide spraying. We now introduce the control variable  tu  such that 

  10  tu  defined on  ftt ,0  where 0t  and ft  are the starting and 

finishing time of control respectively [1] [7] [9]. 

Now the model takes the form, 

    
X

XV
tuXX

d

dX






 1
1  

  





 





 X

X
tuV

d

dV

1
1  (4) 

If we consider   0tu  then there is no reduction in the contact rate 

between the infected whiteflies and the plants. 

If we consider   1tu  then there is no such contact rate between them. 

 tu  plays the key role to express the reduction of contact rate between them 

by the spraying of insecticide. 

We define the objective functional to minimize the cost of insecticide 

spraying as follows: 

      dQXPuttuj ft 22
0  where 0P  and 0Q  

Here the first term represents the costs of spraying insecticide and labor 

charge and the last term represents the extra revenues obtained by the larger 

population of healthy Jatropha Curcas plants. 

Now we are going to find the optimal control. 
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5.1 Theorem. The objective cost function  uJ  is minimum for the 

optimal control u  corresponding to the interior equilibrium   VXE ,2  and 

also there are adjoint variables 21,   satisfying the system of equations, 

  
 

  
  




































2221
1

1
1

1
122

X

V
tu

X

V
tuXQX

dt

d
 

     




















X

X
tu

X

X
tu

dt

d

1
1

1
1 21

2  (5) 

with the boundary condition    .2,10  itfi  The optimal control can be 

given as, 

 
 
  





















XP

XV
tu

11
,1min,0max 12  (6) 

Proof. Applying the Pontryagin Minimum Principle the optimal control 

variable  tu  satisfies 

 
0




 tu

H
 

Which implies 

0
11

2 21 










X

XV

X

XV
Pu  

 
 XP

XV
u




 

12
12  

we first construct the Hamiltonian as follows: 

    











X

XV
tuXXQXPuH

1
11

22  

  











 V

X

XV
tu

1
12  

For the boundedness of the optimal control we have 
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 

 
 

 
 

 
 

 
 




































1
12

1

1
12

0
12
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According to Pontryagin Minimum Principle adjoint variables satisfy the 

following equations: 

i

i

X

H

dt

d







 (7) 

where .,2,1 VXXi i   

That is VXXX  21 ,  and the equations can be determined by using 

(7). This completes the proof of the theorem. 

6. Numerical Simulation and Discussions 

To verify the theoretical results numerical simulations have been carried 

out using MATLAB-2016a. Here we have used MATLAB routine ODE23. 

Distinctive permissible estimations of the system parameters have been 

taken to ensure our theoretical results. 

Keeping in mind the feasibility criteria we have chosen the value of  by 

using the following conditions: 

(1) 



 

(2) 



 

(3) 



 

For the set of parameter values 1.0,2.0,2   satisfying the 

condition 



 the equilibrium point becomes (1, 10). The corresponding 

figure shows the local as well as global stability. Phase portrait is also 
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represented by the same parameter values and it also reflects the same 

results. 

For the set of parameter values 1.0,2.0,3   satisfying the 

condition 



 the equilibrium point becomes (1, 20). The corresponding 

figure shows the small amplitude Hopf bifurcation around the equilibrium 

point. Phase portrait also justify the same results. 

Similarly for the set of parameter values of 1.0,2.0,5.3   

satisfying the condition 



 the equilibrium point becomes (1, 25). The 

corresponding figure shows the large oscillation which leads to unstable 

condition. Phase portrait is also represented by the same parameter values 

and it also reflects the same results. 

We used control theory by using a control parameter  tu  in the basic 

model. It is observed that in the presence of control the growth of plants 

stabilized but the growth of infected whitefly declines. 

In the realistic situation we observe the same phenomena. 

 

Figure 1. Variation of plant-herbivore densities with time for 

.1.0,2.0,2   Here we observe local stability for the population 

with increasing time. 
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Figure 2. Variation of plant-herbivore densities .1.0,2.0,2   This 

shows the phase portrait in the XV plane which is globally asymptotically 

stable state of the model. 

 

Figure 3. Small amplitude oscillation for both the population for the set of 

parameter values .1.0,2.0,3   
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Figure 4. Variation of plant-herbivore densities in the model with 

.1.0,2.0,3   This shows the phase portrait in the XV plane which 

shows Hopf bifurcation. 

 

Figure 5. Large oscillations of both the population for the set of parameter 

values .1.0,2.0,5.3   of model 2. 
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Figure 6. Limit cycle for the parameter values 1.0,2.0,5.3   of 

the model. 

7. Conclusions 

This paper deals with the interaction between the Jatropha curcas plant 

and the whitefly. Here we observe that depending upon the parameter values 

of  we get stable, unstable and bifurcating nature of the system. We also 

discussed about the persistence and permanence of the system. We have tried 

to control the mosaic disease using the pesticide. So we introduced a control 

parameter  tu  on our basic model and observed that with the help of control 

the system becomes stabilized for all the pre-assumed parameter values. The 

results of insecticide spraying is also discussed in the numerical section. We 

have observed that spraying has a better effect on both the population. 
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Figure 7. Effect of control on the stable state for the set of parameter values 

1.0,2.0,2   of the model. 

 

Figure 8. Effect of control on the hopf bifurcating parameter values 

.1.0,2.0,3   
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Figure 9. Effect of control on the limit cycle regarding parameter values 

.1.0,2.0,5.3   
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