

GENERALIZED PRE-SEMI CONTINUOUS MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACE

P. THIRUNAVUKARASU¹ and R. REVATHY²

^{1,2}PG and Research Department of Mathematics Periyar E. V. R. College (Affiliated to Bharathidasan University) Tiruchirappalli, Tamil Nadu, India E-mail: ptavinash1967@gmail.com rrevathy085@gmail.com

Abstract

In this chapter, intuitionistic fuzzy generalized pre-semi continuous mappings is introduced and their relations with various other intuitionistic fuzzy continuous mappings are studied.

1. Introduction

Several authors [1, 2, 3, 4, 5, 6, 7] working in the field of intuitionistic fuzzy (IF) topology have shown more interest in studying the concept of generalizations of continuous mappings. In 2006, a weak form of continuous mappings called intuitionistic fuzzy generalized continuous mappings was introduced by Thakur and Rekha Chadurvedi [11]. Recently Thakur and J. B. Pandey [9, 10] introduced and studied other forms of generalized continuous mappings called IF w-continuous mappings, IFrw-continuous mappings, IFsg-continuous mappings and IFgpr-continuous mappings. Santhi and Jayanthi [8] introduced IF generalized semi pre continuous mappings.

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy topological spaces, intuitionistic fuzzy generalized pre-semi continuous mappings.

Received March 24, 2022; Accepted April 17, 2022

²⁰²⁰ Mathematics Subject Classification: 03B52.

4654

2. Intuitionistic Fuzzy Generalized Pre-Semi Continuous Mappings

Definition 1. Let $f : (X, \tau) \to (Y, \sigma)$ is called an IF generalized pre-semi continuous (IFGPS continuous) g if $f^{-1}(V)$ is an IFGPSCS in (X, τ) for every IFCS V of (Y, σ) .

Example 2. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $H_1 = \langle x, (0.5, 0.4), (0, 5, 0.6) \rangle$, $H_2 = \langle y, (0.6, 0.7), (0.4, 0.2) \rangle$. Now $\tau = \{0 \sim, H1, 1 \sim\}$, $\sigma = \{0 \sim, H1, 1 \sim\}$ are IFTs on X and Y correspondingly.

Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFGPS continuous mapping.

Theorem 3. IF continuous mapping are IFGPS continuous mapping but the converse is not true.

Proof of Theorem 3. $f: (X, \tau) \to (Y, \sigma)$ be an IF continuous mapping. If v is IFCS in y. Now $f^{-1}(V)$ is IFCS in X. For all IFCS is IFGPSCS, $f^{-1}(V)$ is an IFGPSCS in X.

Therefore f is IFGPS continuous mapping.

Example 4. In Example 2, $f: (X, \tau) \to (Y, \sigma)$ is an IFGPS continuous mapping but it is not \mathbf{IF} an continuous Since mapping. $H_2 = \langle y, (0.6, 0.7), (0.4, 0.2) \rangle.$ is IFOS in Y an but $f^{-1}(H_2) = \langle y, (0.6, 0.7), (0.4, 0.2) \rangle$. $H_2 = \langle y, (0.6, 0.7), (0.4, 0.2) \rangle$ is not an IFOS in X.

Theorem 5. All IF α continuous mapping is an IFGPS continuous mapping but the converse part is not true.

Proof of Theorem 5. $f : (X, \tau) \to (Y, \sigma)$ is IF α continuous mapping. v be an IFCS in Y. Now $f^{-1}(V)$ is an IF α CS in X. If all IF α CS is IFGPSCS, $f^{-1}(V)$ is IFGPSCS in X. Therefore f is an IFGPS continuous mapping.

Theorem 6. All IFP continuous mapping is the IFGPS continuous mapping but the converse is not true.

Proof of Theorem 6. $f: (X, \tau) \to (Y, \sigma)$ be an IFP continuous mapping. v be an IFCS in Y. Then $f^{-1}(V)$ is an IFPCS in X. If all IFPCS is an IFGPSCS, $f^{-1}(V)$ is an IFGPSCS in X. Therefore f is an IFGPS continuous mapping.

Example 7. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $H_1 = \langle x, (0.2, 0.1), (0, 8, 0.9) \rangle$, $H_2 = \langle y, (0.5, 0.6), (0.5, 0.4) \rangle$, $H_3 = \langle y, (0.1, 0.4), (0.9, 0.6) \rangle$. Now $\tau = \{0 \sim, H1, H2, 1 \sim\}$, $\sigma = \{0 \sim, H3, 1 \sim\}$ are IFTs on X and Y correspondingly.

The $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Now f is an IFGPS continuous mapping but not an IFP continuous mapping.

Theorem 8. All IFW continuous mapping is an IFGPS continuous mapping but the converse part is not true.

Proof of Theorem 8. $f: (X, \tau) \to (Y, \sigma)$ be an IFW continuous mapping. v be an IFCS in Y. Then $f^{-1}(V)$ is an IFWCS in X. All IFWCS is an IFGPSCS, $f^{-1}(V)$ is an IFGPSCS in X. Therefore f is an IFGPS continuous mapping.

Theorem 9. All IFGPS continuous mapping is an IFGPR continuous mapping but the converse part is not true.

Proof of Theorem 9. $f: (X, \tau) \to (Y, \sigma)$ be IFGPS continuous mapping. v be an IFCS in Y. Then $f^{-1}(V)$ is an IFGPSCS in X. All IFGPSCS is an IFGPRCS, $f^{-1}(V)$ is an IFGPRCS in X. Therefore f is an IFGPR continuous mapping.

Example 10. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $H_1 = \langle x, (0.3, 0.2), (0.7, 0.8) \rangle$, $H_2 = \langle y, (0.5, 0.6), (0.5, 0.4) \rangle$. Now $\tau = \{0 \sim, H1, 1 \sim\}$, $\sigma = \{0 \sim, H1, 1 \sim\}$ are IFTs on X and Y respectively.

The $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFGPR continuous mapping but not an IFGPS continuous mapping.

Theorem 11. All IFGPS continuous mapping is an IFGSP continuous mapping but the converse part is not true.

Proof of Theorem 11. $f: (X, \tau) \to (Y, \sigma)$ be an IFGPS continuous mapping. v be an IFCS in Y. Now $f^{-1}(V)$ is an IFGPSCS in X. All IFGPSCS is an IFGSPCS, $f^{-1}(V)$ is an IFGSPCS in X. Therefore f is an IFGSP continuous mapping.

Example 12. In Example 10, $f : (X, \tau) \to (Y, \sigma)$ is an IFGSP continuous mapping but it is not an IFGPS continuous mapping.

Theorem 13. All IFGPS continuous mapping is an IFGSPR continuous mapping but the converse is not true.

Proof of Theorem 13. $f: (X, \tau) \to (Y, \sigma)$ be an IFGPS continuous mapping. v be an IFCS in Y. Now $f^{-1}(V)$ is an IFGPSCS in X. All IFGPSCS is an IFGSPRCS, $f^{-1}(V)$ is an IFGSPRCS in X.

Therefore f is an IFGSPR continuous mapping.

Example 14. In Example 10, $f: (X, \tau) \to (Y, \sigma)$ is an IFGSPR continuous mapping but it is not an IFGPS continuous mapping.

Theorem 15. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping where $f^{-1}(V)$ is an *IFRCS in X for every IFCS in Y. Hence f is an IFGPS continuous mapping but not conversely.*

Proof of Theorem 15. A be an IFCS in *Y*. Now $f^{-1}(V)$ is an IFRCS in *X*. All IFRCS is an IFGPSCS, $f^{-1}(V)$ is an IFGPSCS in *X*.

Therefore *f* is an IFGPS continuous mapping.

Example 16. In Example 2, $f : (X, \tau) \to (Y, \sigma)$ is an IFGPS continuous mapping but inverse image of a IFCS in Y is not IFRCS in X.

Theorem 17. If $f : (X, \tau) \to (Y, \sigma)$ is an IFGPS continuous mapping, then for each IFP $p(\alpha, \beta)$ of X and each $A\epsilon\sigma$ with $f(p(\alpha, \beta))\epsilon A$, there exists an IFGPSOSB of X containing $p(\alpha, \beta)$ such that $f(B) \subseteq A$.

Proof of Theorem 17. Let $p(\alpha, \beta)$ be an IFP of X and $A \in \sigma$ with

 $f(p(\alpha, \beta)) \epsilon A$. Put $B = f^{-1}(A)$. Then by hypothesis B is an IFGPSOS in X such that $p(\alpha, \beta) \epsilon B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

Theorem 18. Let $f : (X, \tau) \to (Y, \sigma)$ be an IFGPS continuous mapping. Then f is an IFP continuous mapping if X is an IFPST_{1/2} space.

Proof of Theorem 18. Let *v* be an IFCS in *Y*.

Now $f^{-1}(V)$ is an IFGPSCS in *X*, by hypothesis.

Hence *X* is an IFPST_{1/2} space, $f^{-1}(V)$ is an IFPCS in *X*.

Therefore f is an IFP continuous mapping.

Theorem 19. Let $f : (X, \tau) \to (Y, \sigma)$ be an IFGPS continuous mapping and $g : (Y, \sigma) \to (Z, \eta)$ be an IF continuous mapping, then $g \circ f : (X, \tau) \to (Z, \eta)$ is an IFGPS continuous mapping.

Proof of Theorem 19. *v* be an IFCS in *Z*.

Then $g^{-1}(V)$ is an IFCS in *Y*, by hypothesis.

Since *f* is an IFGPS continuous mapping, $f^{-1}(g^{-1}(v)) = (g \circ f)^{-1}(v)$ is an IFGPSCS in *X*. Therefore $g \circ f$ is an IFGPS continuous mapping.

Theorem 20. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X is a IFPST_{1/2} space:

(i) f is an IFGPS continuous mapping,

(ii) $f^{-1}(B)$ is an IFGPSOS in X for all IFOS B in Y,

(iii) All IFP $p(\alpha, \beta)$ in X and for every IFOS B in Y so that $f(p(\alpha, \beta)) \in B$, there will be an IFGPSOS A in X such that $p(\alpha, \beta) \in A$ and $f(A) \subseteq B$.

Proof of Theorem 20.

(i) \Leftrightarrow (ii) is true, $f^{-1}(A^c) = (f^{-1}(A))^c$.

(ii) \Leftrightarrow (iii) Let $p(\alpha, \beta) \in X$. Let *B* be any IFOS in *Y* containing $f(p(\alpha, \beta))$. By hypothesis $f^{-1}(B)$ is an IFGPSOS in *X*. Take $A = f^{-1}(B)$. Now $p(\alpha, \beta) \in f^{-1}(f(p(\alpha, \beta)))$. Therefore $f^{-1}(f(p(\alpha, \beta))) \in f^{-1}(B) = A$. This implies $p(\alpha, \beta) \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

(iii) \Leftrightarrow (i) Let A be an IFCS in Y. Then its complement, say $B = A^c$, is an IFOS in Y. Let $p(\alpha, \beta) \in f^{-1}(B)$

 $\Rightarrow f(p(\alpha, \beta)) \in B$

⇒ There will be an IFGPSOS in X so that $p(\alpha, \beta) \in C$ and $f(C) \subseteq B$ for every $p(\alpha, \beta) \in f^{-1}(B)$

 \Rightarrow There exists an IFGPSOS *C* in *X* with $p(\alpha, \beta) \in C \in f^{-1}(B)$

Therefore $f^{-1}(B)$ is an IFGPSOS in *X* by Theorem 3.4.3.

Hence $f^{-1}(A^c) = (f^{-1}(A))^c$ is an IFGPSOS in X and hence $f^{-1}(A)$ is an IFGPSCS in X.

Therefore *f* is an IFGPS continuous mapping.

References

- Biljana Krsteska and Erdal Ekici, Intuitionistic fuzzy contra strong pre-continuity, Faculty of Sciences and Mathematics 21 (2007), 273-284.
- [2] Biljana Krsteska and Salah Abbas, Intuitionistic fuzzy strongly irresolute pre-continuous mappings in Coker's spaces, Kragujevac Jour. Math. 30 (2007), 243-252.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems 88 (1997), 81-89.
- [4] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in Intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5(2) (1997), 365-378.
- [5] I. M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Math. J. 53 (2003), 793-803.
- [6] Parimala Mani and Devi Ramasamy, Applications of Intuitionistic fuzzy αΨ -closed sets, Annals Fuzzy Math. and Informatics 4(1) (2012), 169-175.
- [7] P. Rajarajeswari and G. Bagyalakshmi, Lambda continuous mappings in Intuitionistic fuzzy topological spaces, International J. App. Infor. Sys. 1(1) (2012), 6-9.

- [8] R. Santhi and D. Jayanthi, Intuituionistic fuzzy almost generalized semi pre continious mapping, Tamkang J. Math. 42(2) (2011), 175-191.
- [9] S. S. Thakur and Jyoti Pandey Bajpai Intuitionistic fuzzy w-closed sets and intuitionistic fuzzy w-continuity, Int. J. Cont. Adv. Math. 1(1) (2010), 1-15.
- [10] S. S. Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy rw-closed sets and intuitionistic fuzzy rw-continuity, Fifteenth Int. Conf. on IFSs, Burgas 11-12 May 2011., NIFS 17(2) (2011), 82-96.
- [11] S. S. Thakur and Rekha Chaturvedi, Generalized continuity in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets 12 (2006), 38-44.