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Abstract 

In this paper, we provide a general solution to the matter of the charging of capacitor in 

LCR circuit. The solution is the second order differential equation supported by removal of first 

order derivative in second order linear differential equation. This is much closed relative in the 

study of elementary physics or mechanics. 

1. Introduction 

The foremost vital problem of charging a capacitor in LCR circuit is used 

in electrical network. Its solution is given in classical manner and in several 

literatures [1-3], there are different formal methods. In this paper, we provide 

a general solution of charging of capacitor connected in LCR circuit. Here we 

consider applied potential difference force is any time dependent function.  

In LCR circuit; Inductance L, Capacitor of capacity C and Resistance R 

are connected in series as shown in Figure 1.  
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Figure 1. LCR Circuit. 

2. Mathematical Analysis 

Let applied potential difference in LCR circuit is ( ) ,sin0 tVtV =  the 

equation of the charging of capacitor is given by [4]: 

tV
C

q

dt

dQ
R

dt

Qd
L =++ sin02

2

 (1) 

On dividing equation (1) by L, we get  

t
L

V

LC

Q

dt
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L
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=++ sin0

2

2

 (2) 

where L is the inductance, R is resistance and C is capacitance of capacitor.  

( )tV  is time dependent function (could also be Sinusoidal, Cosine). 

Equation (2) can be written as 

( )
,2 2

2

2

L

tV
qn

dt

dq
b

dt

qd
=++  (3) 

where ( ) ,sin0 tVtV =  

( )
L

tV
qn

dt

dq
b

dt

qd
=++ 2

2

2

2  (4) 

where bLRb ,2 =  is damping factor, ,
1

,12

LC
nLCn ==  is resonant 

frequency. 

Comparing the equation (4) with second order linear differential equation 

given by [5-6] 
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We have 
( )

.,,2 2

L

tV
RnQbP ===  

Now remove the first derivative from given equation. 

We choose 

btPdt
eueu −−

===
 2
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Let complete solution be uwy =  

Then w is given by the traditional equation by equation (7)  
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2
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Let D
dt

d
=  then equation (2) are going to be  

 ( )
( ) bte
L

tV
wnbD =−− 222  

Putting mD =  we find auxiliary equation and find roots of the equation 

are ( )22 nbm −=  then complementary solution 

C.F. ( ) ( ) ptpttnbtnb BeAeBeAe −−−− +=+=
2222

 

where ( )22 nbp −=  as .0, →→ pnb  

Particular integral,  
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Here we assume external force is sine function with angular frequency , 

then  

( ) ,sinsinsin 0
0 tvt
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On rationalization we get  
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On solving this by method to find P.I. then by solution  
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Solution of differential equation of charging of capacitor connected in 

LCR circuit is given by: 
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Now by given initial condition we can find the value of A and B then 

finally capacitor get charged at any time ‘t’. 
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The first part represented by (7) is complementary solution which 

decreases exponentially with time and after sometime this term vanishes, 

hence it is also known as transient charging of capacitor and charging with 

frequency other than frequency of applied potential difference, after a long 

time t  (relaxation time) capacitor starts charging with frequency of 

applied potentials called steady state of charging of capacitor. When capacitor 

is fully charged then start discharge through inductance and resistance. 

Since current in the circuit is 
dt
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On giving initial condition we can find current in circuit at any instant ‘t’.  

At, ( ) 0,0 == tqt  and 0== dtdqI  by equations (7) and (8)  
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Solving (i) and (ii) the value of 
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Now to find Amplitude and Phase difference we assume charging of 

capacitor is sinusoidal 

( ) ( )0sin0 += tqtq   

then by equation (7) 
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On comparing coefficient of tsin  and tcos  we get  
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On squaring and adding (9) and (10) we get,  
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On dividing (10) by (9) we get phase difference  

   22
1

22

2
tan,

2
tan

−


=

−


= −

n

b

n

b
 (12) 



ANALYSIS OF SOLUTION OF DIFFERENTIAL EQUATION … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023 

1205 

If damping 0=b  then  

 220
−

=
n

v
q  

and 0=  degree. 

If ,n=  and ,0→b  then amplitude of charging will be infinite and 

phase difference will be 
2


=  this is the condition of resonance charging.  

Special Cases. 

1. When ,n  i.e. the frequency of potential is very much less  

2. When ,n=  i.e. resonance state 

Case 1. When ,n  in low damping case 0→b  then from equation  

( )
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
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q 0

0

20 1
===  and 

0=  Degree. 

In this case amplitude of charge does not depend on inductance but only 

depends only on the 0V  and capacitance C of capacitor. 

Case 2. When n=  by equation (7) 
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This is called the condition of resonance. Thus at resonance, the 

amplitude of charging depends on the resistance. 

Result and Conclusion 

From the above discussion in the paper, we conclude that charge on 

capacitor at any instant can be find out with the help of equation (7) and 

current at any instant can be find out with the help of equation (8). However 

the solution of differential equation of charging of capacitor can be finding out 

by using Laplace transformation which is the less time consuming solution. 

graphical representation of charging of capacitor in LCR circuit is shown in 

Figure 2 as an example.  

     

Figure 2. Graphical representation of charging of capacitor in LCR circuit. 
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