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Abstract

In this paper, we introduce Modal Operators on Picture Fuzzy Matrix (PicFM) and derive
some results.

1. Introduction

In 1965, Zadeh introduced the concept of fuzzy sets (FS), a powerful tool
for dealing with fuzzy. As a result, Atanassov introduced a new concept in
1983 called the Intuitionistic Fuzzy Set (IFS), an extension of FS. After the
introduction of FS, Hashimoto [3] introduced the concept of fuzzy matrix
(FM).

For motivations to deal with completely different kinds of uncertainties,
there are many generalizations and modifications of F'S theory, such as vague

sets, rough sets, soft sets, IFS theory, and F'S theory.

Due to some limitations on true and false membership values, FS and its

extensions only handle uncertain data and vague and inconsistent data that
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may actually exist. For example, in some areas of the science discipline, it has
been pointed out that the two elements do not seem to be free to represent a
particular type of data. In such cases, neutrality is needed to fully represent
the data. For example, in Medicine, a disease can have three types of effects
(positive, neutral, negative) on selected symptoms. Therefore, it removes the
limitations of IFS and handles additional uncertainties achievable in a

reasonable state.

PicFS was started by Cuong and Kreinovich [4] as a generalization of IFS.
Recently, Shovan Dogra and Pal [5] studied the concept of the PicFM and its
applications, and the MO of Intuitionistic FM [8] was studied by P.
Murugadas, S. Sriram, and T. Muthuraji.

This article explores MOs on PicFMs and describes some properties.
2. Preliminaries

Hereafter P, means PicFMs of order x xy and P, denotes PicFMs of

order x x x.
For basic theory about PicFS and PicFMs see (4, 5).

Definition 2.1. For a = (¥, 1", xf>, b= (¢, ¢", (I)f> € PicF'S, we define

joint (v) and meet (A) operations as,

M) G ) v (@ 7 6 = (max(d, ¢), max (", ¢"), min (!, o)

t

= (", " ) if et + e+ ¢/ <1, otherwise find max {¢, ¢”*, ¢/} and replace

max {c, ", cf} by 1- (sum of the rest of the Components)
@ (s 1" 1) A (@ 07 ¢) = (min G, ¢°), min (", ¢°), max (¢, o))
@) a =" 1" 1)
Definition 2.2. For PicFMs yl = ((ylﬁcy, iy, y1§y>)mxn,
/

y2 = (<y2§cy9 yz;cly yzxy))mxn’

Define
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MODAL OPERATORS ON PICTURE FUZZY MATRICES 999
1) y1v y2 = (<y1t v y2xy, Vv Y2, yl,’;y A y2§y>)
(@) YL A Y2 = (¥ly A 2%y, Ty A 7280 Yy v ¥24)
3) Y1 x ¥2 = (v (5% A ¥25)) v (V18 A Y20, A (01 v 320,
@) y1T = ((ylﬂ, %, y1§i>) (le is transpose of y1)
(5) 1 < y2 iff 31k, < y24y, 217, < 528, 2L, = y2L,
6) 71¢ = (9%, 318, 14,))
(7) 1@ y2 = (314, v y2hy, Y12, A 20, 910, A y2L))
®) 110 y2 = (Mhy A ¥2hy, Y10y A ¥20, 1L, v y2L)).

3. Results Using Modal Operators in PFM

In this section, we define the Model operators [, ¢ for PFM and discuss

the relation between these operators.

Definition 3.1. For PicFM 31 = ((y1 xy, iy, yl{cy)) We define
b1 = (31hy, 917, 1— 315))) and oyl = (1 — 31k, 917, 1 y1£)).

The ¢yl and [lyl need not be a PicFM.

Proposition 3.2. For PicFM yl = ((ylxy, iy, y1£y>) € Prxy we have

@) CI(0y1) = o1

(1) o(Cy1) = [yl

i) OOyl = [yl

@iv) 00yl = Oyl.

Proof. (i) 0yl = ((1 - ylf iy, ylf ))

Xy
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O(0y1) = (1 - 314, 317, 1~ (1 - y1L)))
= (<1 - yl{cy’ yl;cly’ ylal;y»
= 0yl
= 0(0y1) = Oyl
(i) Tyl = (1%, 315y, 1 - 21%,))
<>(Dyl) = (<1 - (1 - ylgcyl yl;clya 1- ylicy))
= (<y1§cy’ ylchy’ 1- ylgcy»
= [yl

= 0(Oy1) = [yl

(1) Oyl = O(Cy1)

= O(y1%y, 1%, 1— y15))
= (1%, 1%, 1= y1%,))
= [yl

SOy = Oyl

(iv) 00yl = 0(y1)

= 0(<1 - ylolzy’ ylgclyv yl{cy))
= (<1 - yl{cy’ yl;cly’ ylaéy»
= 0yl

2001 = Oyl
Proposition 3.3. For PicFM yl = (<y1§cy, Yy, y1£y>) € Py,xn we have
() @y1°)° = 0y1, (i) (0y1°)° = Oyl
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Proof. y1 = (1%, 1%, ¥1%,)) then y1¢ = (31}, 315, 315%,))
(1) Consider ([y1¢) = ({ 1§y, Yy, 1 - yl,cy))
(Y1) = (1 - y1L,, 312, 315)) = on
s (Oy19)° = oyl
(ii) Consider (0y1°) = ({1 — y14, 317, y1%,))
(1) = (31, 1%, 1= 315)) = Oyt
oo (0y19)¢ = Oyl

Proposition 3.4. For PFMts yl = ((ylxy, iy, ylfcy)),

= (y2,, ¥22,, ¥2L.)) € B, then Tyl Oy2 = O(y1° @ y2°).
Proof. [yl oy2 = ((yI%, A y2,, ¥1%, A ¥25, (1 —y1%,) v (1 - »1%,)) (B.1)
Now, (y1¢ @ y2°) = ((y1 xy v y2§y, Yy A ¥2%ys Ylgy A y2§cy>)

(y1¢ ® y2°)° = ((ylgcy A y2§cy, iy A Y25y, yléy v y2§y>)

O(y1¢ @ y2°) = (315 A 325, 31y A 3258, 1= (715 A ¥24,) (3.2)
Claim. (1 - y15,) v (1 - y2%,) =1 - (315, A ¥25)). (3.3)
Case (i) If y1 > y2 then ylxy > y2xy, - y2 and ylxy < y2

LHS of equation (3.3), ylxy > Zty then (1 — y1! xy) < (1- y2! xy)

(1—y1hy) v (1 - y25,) =1 - y2%, (3.4)
RHS of equation (3.3), 1 — (ylﬁcy A y2§cy) =1- y2§cy (3.5)

From equations (3.4) and (3.5), we get, LHS = RHS
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Case (ii) If y1 < y2 then ylﬁcy < y2§cy, Yy < ¥2%, and yl{cy > y2§y
LHS of equation (3.3), ylﬁcy < y2§cy then (1 - ylﬁcy) >(1- y2§cy)
(1—y1hy) v (1 - 925,) =1- 1%, (3.6)
RHS of equation (3.3), 1 - (yl';y A y2§cy) =1- ylﬁcy (3.7
From equations (3.6) and (3.7), we get, LHS = RHS
From Case (i) and Case (ii) we get, [yl © [(y2 = CI(y1¢ @ y2°)°.

Proposition 3.5. For PicFMts yl = ((ylﬁcy, iy, yl,’;y)),

y2 = ((y2§cy, ¥2%y, y2£y>) € Prxy» then Tyl ® [y2 = (y1° O y2¢).

Proof. (W12 = (<y1§cy v y2§cy, Yoy A 25, (1 - ylﬁcy) Al - yliy») (3.8)

Now, (y1°® y2°) = (511, A y2L,, Y17, A y22, 1L, v y2L,))

(y1¢ @ y2°)° = (<y1§cy v y2§cy, Yy A Y25y ylfcy A y2£y>)
O(y1° 0y2°)° = (y1%y v ¥24, 715 A ¥25,, 1= (1% v ¥25,)) (3.9)
Claim: (1 - y15,) A (1 - y2%,) =1- (315, v y2%,) (3.10)

Case (i) If y1 > y2 then ylﬁcy > yZ';y, ylyy > 2%, and ylfcy < y2§y

LHS of equation (3.3), yl%, > y25, then (1 - y15,) < (1 - y2%))
(1-y15) A (1 - p25) =1 - y25, (3.11)
RHS of equation (3.10), 1 — (ylﬁcy v y2§cy) =1- y2§cy (3.12)
From equations (3.11) and (3.12), we get, LHS = RHS.

Case (ii). If y1 < y2 then ylgcy < y2§cy, Yy < 2y, and yléy > y2£y

LHS of equation (3.10), ylﬁcy < y2iy then (1 - ylﬁcy) >(1- y2§cy)
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(1-y15) A (- 525,) =115, (3.13)
RHS of equation (3.10), 1 — (ylgcy v y2§cy) =1- ylﬁcy (3.14)
From equations (3.13) and (3.14), we get, LHS = RHS.

From Case (i) and Case (ii) we get, [yl ® [ly2 = Cl(y1¢ © y2°)°.

Proposition 3.6. For PicFMs y1 = ((y1% xys Yy ylf M

y2 = (< xy’ y2xy’ yzfcy)) xxy’ then 0y1©0y2 = (ylc ® yzc)c~

Proof. 0yl = (1 - yl,’zy, Yy, ylyfcy>) and 0y2 = ((1 - y2,’;y, ¥2%y, y2f )
01002 = (1 - 314,) A = y2L), 312, A y2L, 511, v y2L)) (3.15)
Now, (y1¢ @ y2°) = ((yléy v y2§y, Yy A Y23y ylgcy A y2§cy>)

(51° @ y2°)° = ((y1hy A ¥2hy, 215 A ¥2, 315, v 32L))

0(1° @ y2°) = (1 - (1 v ¥2L), 1%y A ¥2y, 1)y v ¥2L)) (3.16)
Claim: (1 - y1L) A (L—y2L)) =1 - (»1f, v y2L,) (3.17)
Case (i) If y1 > y2 then ylxy > yzxy, ylxy > y2xy and ylfcy < 2§y

LHS of equation (3.17), y1/. f then (1 -yl y) >(1- y2fy)

xy S
1 -y1L)A@-y2L,)=1-y2f, (3.18)
RHS of equation (3.17), 1 — (yl v y2 y) =1-y2%, (3.19)

From equations (3.18) and (3.19), we get, LHS = RHS.
Case (ii) If y1 < y2 then ylﬁc < y2xy, ylyy < ¥2%, and yléy > y2£y
LHS of equation (3.17), y1f, > y2f, then (1 - y1},) < (1 - »2L))

1-yL)A@-y2L)=1-5L (3.20)
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y2

RHS of equation (3.17), 1 — (yl,’;y v y2£y =1- yl{cy (3.21)
From equations (3.20) and (3.21), we get, LHS = RHS.

From Case (i) and Case (ii) we get, 0y1 ® 0y2 = 0(y1¢ @ y2¢)°.
Proposition 3.7. For PicFMts yl = ((ylxy, Yy, ylfcy)),
= ((y2, xyr Y2y, ¥ y>) € Prxy, then 0y1 @ 0y2 = (y1° © y2°)°.

Proof. 0yl = (1 - ylfcy, iy, yl ) and 0y2 = ((1 - y2§;y, ¥2%y, y2f ))
1@ 0y2 = ((L- y1h,) v (L- y2L,) A%, A 28, b, v y2l ) (3.2D)
Now, (y1¢® y2°) = ((yléy A y2£y, iy A ¥230y, ylﬁcy v y2§cy>)

(01 @ y2°) = (1l v 2%y, 91 A 20, 314y A 32L,))

01 @y2°) = ((1- (1 A y2Ly) 31y A 528y, 91k, A 52L) (3.22)
Claim. (1 - y1f,)v 1 - y2L,) =1 - (1L, A y2L)) (3.23)
Case (i) If y1 > y2 then yliy > yZ';y, ylgy > ¥2y, and yléy < y2§y

LHS of equation (3.23), y1L f then (1 - ylf )>(1- y2fy)

xy S
1 -y1L)v @ -y2L,)=1-y2L, (3.24)
RHS of equation (3.23), 1 — (yl A Y2 y) =1- y2f (3.25)
From equations (3.24) and (3.25), we get, LHS = RHS.

Case (ii) If y1 < y2 then y1}, < y2! L < y2i, and y1f, > y2f,

xys Y
LHS of equation (3.23), ylxy > y2fy then (1 - y1§y) <(@1- yZJ’;y
1 -y1L)v @ -y2L,)=1-y2f, (3.26)

RHS of equation (3.23), 1 - (1L, A y2L,) =1 - y2f, (3.27)
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From equations (3.26) and (3.27), we get, LHS = RHS.
From Case (i) and Case (ii) we get, 0yl @ 0y2 = 0(A° © y2°)°.

Proposition 3.8. For PicFMs yl = ((ylxy, iy, yl,’;y)),

y2 = (<y2xy, Y25y, y23fcy>) € Pexy, then Tyl ® [y2 = C(y1 @ y2).

Proof. [yl ® [Iy2 = ((ylt v y2xy, v A Y25y, (1= ylﬁcy) Al- ylﬁcy»)
(3.28)

Now, (y1 ® y2) = ((ylt v y2xy, A Y25y, yl,fcy A y2§y>)

Oyl @ y2) = ((y1%y v ¥25, y10%y A ¥20,, 1= (315 v ¥25,)) (3.29)

Claim. (1 - y15,) A (1 - y2%,) =1- (315, v y2%,) (3.30)

From equation (3.10), we get, [yl @ [y2 = [J(yl @ y2).

Proposition 3.9. For PicFMts yl = ((ylﬁcy, iy, ylfcy)),
y2 = (2L, y28,, ¥20.)) € Py, then Oy1 @ 0y2 = 0(y1 @ y2).

Proof. 0yl = (1 - y1%,, 313y, 31%,)) and 02 = (1 - y2L,, 522, y2L,))

oyl @ 0y2 = (1 - 3145, v (1 — 31%)), 1%, A y22, 31L& y2L)) (3.31)

Now, (1@ y2) = (11, v ¥2ky, 713y A 323, 3L, A 32L,))

001 @ y2) = (1= (51dy A 32Ly) 318 A 32, 14y A 52L,) (3.32)

Claim. (1 - y1L,)v (1 - y2L,) =1 - (3L, A y2L,) (3.33)

From equation (3.23), we get, 0yl ® 0y2 = O(y1 @ y2).

Proposition 3.10. For PicFMs vl = ((y1% xys Yy ylf M
y2 = ((y2L vy Y25y y2§y>) € Pexy, then [yl ©y2 = L(y1© y2).

Proof. (y1o[y2 = ((ylﬁcy A y2k xys Yy A ¥2%y, (1 - ylﬁcy) v(l- ylﬁcy»)

(3.34)
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Now, (y1© y2) = (y1hy A y2%,, Y12, A y28, 314y v ¥2L.))
O(y1© y2) = (31hy A ¥2hy, Y1k A 328, 1= (715, A ¥25)) (3.35)
Claim: (1 - y15,) v (1 - y2%,) =1 - (315, A y2%,) (3.36)

From equation (3.3), we get, [yl ® [(y2 = [yl @ y2).

Proposition 3.11. For PicFMs yl = ((ylxy, iy, ylf M
¥2 = ((¥2%y, ¥23y, y2§y>) € Pexys then 0y1©0y2 = o(y1© y2).

Proof. Oyl = (1 - y1y. 31k, 314,)) and 0B = (1~ y24,, y25,. 324,))

Wyleoy2 = (1 - ylyfcy) Al- ylfcy), Yy A Y25y, yl,’zy v y2f ) (3.37)

Now, (310 52) = (M A 2%y Y1y A 323, 914, v ¥2L,)

0(10y2) = (1 - (0L, v y2L), 112, A 28, 315, v y2L) (3.38)

Claim: (1 - y1L,) A (1 - y2L,) =1 - (3L, v y2L,) (3.39)

From equation (3.17), we get, 0y1 ®0y2 = (y1 ® y2).

Similarly we can prove the following Propositions.

Proposition 3.12. For PicFMts yl = ((ylxy, iy, ylfcy)),
y2 = ((nyy, ¥2%y, y2f ) and y3 = (<y3xy, Y3y y3,’zy>) € Pexy then,
O((y1 @ y2)© y3) = (Chl © Oy2) o hys.

Proposition 3.13. For PicFMs y1 = ((y14 xys Yy, ylfcy))
y2 = ((y2L Xy Y2y y2f ) and  y3=((y3L ys Y%y y3,fcy>) € Powy  then,
O(y1oy2) @ y3) = (h1oy2) @ [hys.

Proposition 3.14. For PicFMs y1 = ((y14 xy» Yy ylfcy))

¥2 = (y2h,, ¥2%, ¥20L0)  and  y3 = ((y3L,, ¥3%, ¥3L,)) € By then,
O((y1 @ y2)© y3) = (Oy1 ® 0y2)® Oy3.
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Proposition 3.15. For PicFMs yl = ((ylxy, iy, ylfcy)),

y2 = ((y2§cy, ¥25y, y2§;y>) and y3 = (<y3;y, ¥3%4ys ySfcy)) € Prxy then,
(1O y2) @ y3) = (0y1 © 0y2) ® Oy3.

4. Results using Max-Max-Min product

Proposition 4.1. For PicFMs yl = ((ylxy, iy, ylxy>) y2 = (<y2xy,

¥2%y, yZ{Cy)) € Pexy then, C(yly2) = Cyllly2.
Proof. yly2 = (( Z Y15 ¥25 Zk YLk Y2hy Hk (1L, + yziy»)
t oot t oot
O0L2) = (Y, MendZhys D Wiy2ly 1= yd2hy)) (4D

T2 = (D, ey D, M2y [ [, (@ - 51%0) + - 52)

(4.2)
Claim 1. 1- (D 3%e2y) = [ ], (@ - 1%) + (0 - 524)) (4.3)
Set Z Y1232}, =1 - y1%; for some I, then ylk; < y2§y.
1-y1% > 1-y2,
LHS of equation (4.3), 1 — (Z Y120.520,) =1 - y13 (4.4)

Now RHS of equation (4.3),

[ 1, @2+ @520 = @ -0k + 0 -r2)] [, -1
+ 1= 02g) = -] |, (@515 + (- 524) (4.5)

Case (i). yl';, > y1t; and y2%;, < y1%,

1-9y1t, <1-y1%; and 1 - 2%, <1 - 1%,
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1-y2hy, > 1- 1y

From equation (4.5),
H (= L) @ = 2hy)) = (L= y15)) + (1 - ¥2%,) =1 - y1%y (4.6)
From equation (4.4) and equation (4.6), equation (4.3) holds good.
Case (ii). y1j, < y1%; and y2, > y1},
1-y1%y, >1—y1k, and 1 - 2%, <1 -1},
1-y24, >1- 91k,
From equation (4.5),

[, @-na-s2h)=a-smp+a-s2h) =1-n @D

From equation (4.4) and equation (4.7), equation (4.3) holds good.

Similarly we can prove the other cases.
Proposition 4.2, For PicFMs y1 = (314 xy» Yy ylfcy))

= ((y2%y, Y2y, ¥24y)) € Py then, O(y1y2) = 0y10y2.

Proof. yly2 = ((Zkylﬁcky%y, zkylg’éky%y, H (ylfp + y2f N

o(y1y2) = H (nf, + y2ky) Z YR 2Ry H 1/, + y2f ) (4.8)
w92 = (Y @=L -y20). D ki, [ [, 010 +02,) @9

Claim 1. 1 - Hk(ygfck +y2ff,) = Zk(l — 1l - y2f) (4.10)

Set H (ylxk + y2fk ) = yl{d for some [;

LHS of equation (4.10), 1 — H (ylxk + y2fk )=1- ylf (4.11)
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We have ylfcl > yZ{y then 1 — ylil <1- yZ{y
Now RHS of equation (4.10),

D A=l -y2) = -l 0-x20)+ D a-nf)a-2l)
=-nf)+ Y a-nl)a -2l (4.12)
Case (i) ylik > ylil and y2£k < ylfcl
1-y1, <1-y17 and 1-y2f, >1- 31/,
1-y2f, >1-nl,

From equation (4.12),

D @-nlpa-y2f ) =-nl)+-»2f)=1-n @13
From equation (4.11) and equation (4.13), equation (4.10) holds good.
Case (ii) ylf}, < ylfl and y2fk > ylf
1-yl, >1 -1 and 1-y20, <1 -1/,

1- yzf >1-y1/,
From equation (4.12),
D @-nfpa-s2f ) =a-nl)+-»2)=1-n, @19

From equation (4.11) and equation (4.14), equation (4.10) holds good.
Proposition 4.3. For PicFMs yl = ((ylﬁcy, iy, yl{cy)),

y2 = (<y2xy, Y25y, y2f ) and y3 = (<y3xy, ¥34ys y3£y>) € Pexy then,
O + ¥2)y3) = Dyly3 + y2y3).

Proof. (y1+2)y8 = (D (s +32ke) 38k D (1% + 32%), 335,
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| ) RE AR S)
= (D, OLaatyBiyt + y24330), D (L33 + 328580 ),
[T, 0L + 23,020, + 58], D1+ 52)3)
= (D, OLkdBhy + 3238l ) D (1%k58Ry + y2033%)

1- Zk(ﬂ;kyggy + ¥2.335 ). (4.15)
Now, yly3 + y2y3

= (D, a8l + D 9208l D Bh + D v2 8,

H . (ylfck + y3£y) H . (nyck + y3£y)>)

= (D, OLkdBhy + 3238l ) D (1%k53Ry + y2 33

[T, 0L + 23,020, + 58], D1+ 52)3)

= (D, OLhkdBhy + 3238hy) D (1%k33Ry + y2033%)

1= (024d8hy + 72%030) (4.16)

From equation (4.15) and equation (4.16) we get, l(y1+ y2)y3)
= (yly3 + y2y3).

Similarly we can prove the following Propositions.

t n

Proposition 4.4, For PicFMts Il = ((35ys Yy, yl,’;y)),

y2 = ((y2§cy, ¥25y, y2§;y>) and y3 = (<y3;y, ¥3%4ys ySfcy)) € Pxy then,

(1 + y2)y3) = o(y1y3 + y2y3).
n

Proposition 4.5. For PicFMs yl = ((ylﬁcy, iy yl{cy)),
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y2 = (<y2§cy, ¥25y, y2§y>) and  y3 = ((y3§cy, ¥3%ys yS{Cy)) € Pexy then,
O(y1y2)y3 = Chy1C0(y2y3).

Proposition 4.6. For PicFMs 31 = ((31hy, 312, ylfcy)),

y2 = ((y2§cy, ¥2%y, y2§y>) and Y3 = ((y3§cy, Y35y y3,fcy>) € Pexy then,
0(yLy2)0y3 = 0y10(y2y3).

5. Conclusion

In this paper, we have defied the Model Operators on Picture fuzzy
matrices and discussed some results related to these operators. Further it is

proved that necessity and possibility operator is distributive over addition.
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