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Abstract 

In this paper, we introduce the concept of S-topological BE-algebras (STBE-algebras) as a 

generalization of the concept of topological BE-algebra by using the concepts of semi-open sets 

and prove some of its properties. We also introduce the topological concepts, open sets, closed 

sets, interior and closure in STBE-algebras and arrive at the topological properties of STBE-

algebras. 

1. Introduction 

In [4] H. S. Kim and Y. H. Kim introduced the notion of BE-algebras, 

which is a generalization of BCK-algebras. They also introduced the notion of 

commutative BE-algebras and studied their properties and characterization. 

In [6], S. Mehrshad and J. Golzarpoor studied the topological BE-algebras 

and discussed their properties. In [7], M. Jansi and V. Thiruveni introduced 

the notion of ideals in TSBF-algebras. In this paper, we introduce the notion 

of S-topological BE-algebras. In this way, we study the connection between 

BE-algebras and topology and discuss some of its properties. The concept of 

S-topological BE-algebras is a generalization of the concept of topological BE-

algebras. An S-topological BE-algebra is a BE-algebra X together with a 

special type of topology that makes the operation defined on X, S-topological 

continuous. 
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2. Preliminaries 

Definition 2.1 [4]. A BE-algebra ( )1,, X  of type (2, 0) (A non-empty set 

together with a binary operation * and a constant 1) satisfying the following 

conditions. 

1. 1= xx  

2. 11 =x  

3. xx =1  

4. ( ) ( ) .,,, Xzyxzxyzyx =  

Definition 2.2 [11]. A non-empty subset A of a BE-algebra X is called a 

sub-algebra of X if .,, AyxAyx   

Definition 2.3 [11]. A non-empty subset I of a BE-algebra X is called an 

ideal of X if  

1. Xx   and IaxIa   

2. Xx   and ( )( ) IxxbaIba  ,  

Definition 2.4 [5]. 

(i) A subset A of a topological space is said to be semi-open if .AIntA   

(ii) The complement of semi-open set is called semi-closed. 

(iii) The semi-closure of a subset A of a topological space is the 

intersection of all semi-closed set containing A. It is denoted by .sA  

(iv) A subset A of a topological space is said to be regular-open if 

.AIntA =  

Definition 2.5 [10]. A topological space ( ),X  is called semi- 1T  if for 

each two distinct points Xyx ,  there exists two semi-open sets U and V 

such that U contains x but not y and V contains y but not x. 

Definition 2.6 [10]. A topological space ( ),X  is called semi- 2T  if for 

each two distinct points Xyx ,  there exists two disjoint semi-open sets U 

and V such that Ux   and .Vy   
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Definition 2.7 [6]. Let ( )1,, X  be a BE-algebra and .XF   The F is a 

filter when it satisfies the following conditions. 

1. .1 X  

2. If Fx 1  and ,Fyx   then .Fy   

3. S-Topological BE-algebras 

Definition 3.1. A BE-algebra ( ),X  together with a topology  is called a 

S-topological BE-algebra (STBE-algebra) if the function XXXf →:  

given by ( ) ,, yxyxf =  which satisfies the condition that for each open set 

M containing ,yx   there exists an open set U containing x and a semi-open 

set V containing y such that .,, XyxMVU   

Example 3.2. Consider a BE-algebra  dcbaX ,,,,1=  with the 

following Cayley table. 

* 1 a b c d 

1 1 a b c d 

a 1 1 b c d 

b 1 a 1 c c 

c 1 1 b 1 b 

d 1 1 1 1 1 

Consider     .,,,,,, dbdcaXs =  Clearly, * is S-topologically 

continuous. Then ( )sX ,,  is a STBE-algebra. 

Theorem 3.3. Let ( )sX ,,  be a STBE-algebra, XA   and .Xx   

Then the following conditions hold. 

1. xAxA   

2. If xA   is closed, then .xAxA =  

Proof. 1. Let xAy   and M be any open set containing y. Then 

., Aaxay =  
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Since X is a STBE-algebra, there exists an open set U of a and a semi-

open set V of x such .MVU   

Since ,Aa   every open set of a intersects A. So, there is an element b 

such that .UAb   

Therefore, xAxb   and .MVUxUxb   

That is every open set M of y contains an element xb   from .xA   

Hence .xAy   So, .xAxA   

2. Let xA   is closed. Let .xAy   

Suppose .xAy   Then ( ) .cxAy   

Since xA   is closed, ( )cxA   is open. Clearly, ( ) .cxAxA   So, 

( ) .=
cxAxA   

Now, since ,xAy   every open set of y intersects .xA   So 

( ) ,
cxAxA   which is a contradiction. Therefore, ,xAy   which 

implies .xAxA   

From 1 it follows that .xAxA =  

Theorem 3.4. Let ( )sX ,,  be a STBE-algebra, XA   and .Xx   

Then the following conditions hold. 

1. AxAx s   

2. If sAx   is closed, then .AxAs =  

Proof. Let sAxy   and M be any open set containing y. Then 

., sAaaxy =  

Since X is a STBE-algebra, there exists an open set U of x and a semi-

open set V of a such that .MVU   

Since 
sAa   every semi-open set of a intersects A. So, there is an 

element b such that .VAb   
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Therefore, Axbx   and .MVUVxbx   

That is every open set M of y contains an element bx   from .Ax   

Hence .Axy   So, .AxAx s   

2. Let sAx   is closed. Let .Axy   

Suppose .sAxy   Then ( ) .csAxy   

Since sAx   is closed, ( )csAx   is open. Clearly, ( ) .csAxAx   So, 

( ) .=
csAxAx   

Now, since ,Axy   every open set of y intersects .Ax   So 

( ) ,=
csAxAx   which is a contradiction. Therefore, ,sAxy   which 

implies .sAxAx   

From 1 it follows that sAxAx =  

With similar argument, we can prove the following theorem. 

Theorem 3.5. Let ( )sX ,  be a STBE-algebra and ., XBA   Then the 

following conditions hold. 

1. BABA   

2. If BABA s   is closed, then .BABA =  

Theorem 3.6. In a commutative STBE-algebra, ( )sX ,,  if {1} is open, 

then s  is discrete. 

Proof. Let .Xx   Assume that, {1} is open. 

Since, Xxxx = ,1  and X is a STBE-algebra, for every open set M 

of 1, there exists an open set U of x and a semi-open set V of x such 

.MVU   In particular,  .1VU  

Let .VUG =  Now, Gx   and G is semi-open. 

Let Gy   and .yx   Then ,1== xyyx  this implies that yx =  

(since X is commutative). 
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Hence  xG =  is open also. 

Since x is arbitrary,  x  is open for all .Xx   Hence s  is discrete. 

Theorem 3.7. Let ( )sX ,,  be a STBE-algebra and Y be an open BE-

subalgebra of X, then Y is also an STBE-algebra with respect to a subspace 

topology .
sY  

Proof. Let .Yyx   Since Y is a subalgebra of .,, YyxX   

Let M be an open set of yx   in Y. Then ,UYM =  where U is an open 

set of yx   in X. 

Since X is a STBE-algebra, there exists open set 1W  of x and semi-open 

set 2W  of y such that 

.21 UWW   

Then YW 1  is an open set of x in Y and YW 2  is a semi-open set of y 

in Y. 

Now, ( ) ( ) ( ) .2121 MYUYWWYWYW ==   

Hence, ( )
sYY ,,  is an STBE-algebra. 

Definition 3.8. A non-empty subset A of a STBE-algebra ( )sX ,,  is 

called an ideal of X if the following conditions are satisfied. 

1. .1 A  

2. For all 1x  in X and for all ,Ay   if Ayx   then .Ax   

Theorem 3.9. Let ( )sX ,,  be a STBE-algebra and A be an open ideal in 

X, then A is semi-closed and regular-open. 

Proof. Suppose .Ax   

Since ,1= xx  for every open set A of 1, there exists open set M of x and 

a semi-open set N if x such that .ANM   

Let .NMG =  Then Gx   and G is semi-open. Also, 

.ANMGG   
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Since A is an ideal, we have ,AG   which is a contradiction. 

Thus, .\ AXG   Then A is semi-closed. 

Since A is open, we have ( ).AIntA   Therefore ( ).AIntA =  Hence A is 

regular open. 

Theorem 3.10. If A is an ideal of a STBE-algebra X and ( ),1 AInt  then 

A is open. 

Proof. Let .Ax   Since ( ),1 AInt  there is an open set U of 1 such that 

.AU   

Since, X is a STBE-algebra, for every open set U of 1, there exists an open 

set 1W  of x and a semiopen set 2W  of x such that .21 UWW   

Therefore, AWW  21  and .1 UxW   

Let ( ).\1 AXWy   Then .Axy   This implies Ax   for Ax   

and A is an ideal. 

This is not possible. Therefore, .1 AW   Thus ( ) ., AxAIntx   

Hence A is open. 

4. Properties of S-Topological BE-algebras 

Definition 4.1. A S-topological BE-algebra ( )sX ,,  is called semi- 1T  

STBE-algebra if for each pair of distinct points Xyx ,  there exist two 

semi-open set U and V such that U contains x but does not contain y and V 

contains y but does not contain x. 

Definition 4.2. A topological BE-algebra ( )sX ,,  is called semi- 2T  

STBE-algebra if for each pair of distinct points Xyx ,  there exist two 

disjoint semi-open set U and V such that UyUx  ; and .; VxVy   

Theorem 4.3. Let ( )sX ,,  be a BE-algebra. If   1  is closed, then X 

is semi- 2T  STBE-algebra. 

Proof. Let  1  be closed and let Xyx ,  such that .yx   Then 

1 yx  or .1 xy  
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Without loss of generality, we assume that .1 xy  

Then there exists an open set U containing y and a semi-open set V 

containing x such that  .1\XVU   Hence X is semi- 2T  STBE-algebra. 

Theorem 4.4. Let ( )sX ,,  be a 0T  STBE-algebra. Then X is semi 1T  

STBE-algebra. 

Proof. Let Xyx ,  such that .yx   Then either 1 yx  or 1 xy  

Assume that .1 yx  Since X is ,0T  there exists an open set U containing 

either one of 1 yx  or 1 but not both. 

Let us assume that Uyx   and .1 U  

Now, as ( )sX ,,  is a semi S-topological BE-algebra, there exists an 

open set V containing x and a semi-open set W containing y such that 

.UWV   These V and W are the required semi open sets containing x and 

y respectively. 

If U1  and Uyx   then .1 Uxx =  Then there exists an open set 

V containing x and a semiopen set W containing x such that UWV   and 

.1 Uyy =  

Then there exists an open set 1V  containing y and a semi-open set 1W  

containing y such that .11 UWV   

Take WVG =  and .11 WVH =  Then G and H are two semi-open 

sets such that Gx   and .Hy   Also, Gy   and .Hx   

Hence ( ),,X  is a semi- 1T  STBE-algebra. 

Definition 4.5. Let ( )sX ,,  be a STBE-algebra and .XF   Then F is 

a filter if it satisfies the following conditions. 

1. .1 F  

2. If Fx 1  and ,Fyx   then .Fy   

Example 4.6. Consider Example 3.2. Here * is S-topological continuous. 

Also,  b,1  is a filter in X. 
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Theorem 4.7. Let ( )sX ,,  be a STBE-algebra and F be a filter in X. If 1 

is an interior point of F, then F is semi-open. 

Proof. Suppose that 1 is an interior point of F. Then there exists M 

containing 1 such that .FM   

Let .Fx   Since ,1= xx  there exists an open set U containing x and a 

semi-open set V containing x such that .FMVU   

Now, for each y in the semi-open set V, we have .Fyx   

Since F is a filter and ,Fx   we have .Fy   Therefore, .FWx   

Hence F is semi-open. 

Theorem 4.8. Let ( )sX ,,  be a STBE-algebra and F be a filter in X. If 

F is open, then it is closed. 

Proof. Let F be a filter in X which is open. We show that FX \  is also 

open. 

Let .\ FXx   Since F is open, 1 is an interior point of F. 

Since ,1= xx  there exists open set V containing x and a semi-open set 

W containing x such that 

.FWV   

We claim that .\ FXV   

If V is not a subset of ,\ FX  then there exists an element .FVy   

Now, for each ,Wz   we have .FWVzy   Since F is a filter and 

,Fy   we have .Fz   

Thus ,FW   which implies ,Fx   which is a contradiction. 

Hence, FXFXVx  \  is open. Therefore, F is closed. 

Definition 4.9. Let ( )sX ,,  be a STBE-algebra, U be a non-empty 

subset of X and .Xa   

The subsets Ua  and aU  are defined as follows. 
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 UaxXxUa = :  and  .: UxaXxaU =  

Also, if XK   we get aUKU Ka=   and .UaUK Ka=   

Theorem 4.10. Let ( )sX ,,  be a STBE-algebra and U be two nonempty 

subsets of X. Then 

1. If U is open, then Ua  is open and aU  is semi-open. 

2. If U is closed, then Ua  is closed and aU  is semiclosed. 

Proof. 1. Let U be an open set, Xa   and .Uax   

Then .Uax   Then there exists an open set W containing x and a 

semi-open set A containing a such that ., UWaaxUAW   Thus 

.UaW   So, UaWx   is open. 

To prove aU  is semi-open, let .UxaaUx   

Then there exists an open set A containing a and a semi-open set 1W  

containing x such that 

., 11 UaWxaUWA   Thus .1 UWa   So, aUaUWx  1  

is semiopen. 

2. Let U be closed. Then cU  is open. 

So, by 1, aU c  is open and caU  is semi-open. 

Clearly, ( ) aUUa cc
=  and ( ) .cc aUaU =  Hence ( )caU  is open and ( )caU  

is semi-open. 

Ua  is closed and aU  is semiclosed. 

5. Conclusion 

We have studied the properties of STBE-algebras using the topological 

concepts like open sets, semi-open sets, closed sets and filters. We can further 

study about various topologies induced by the filters. 
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