ISSN 0974-6803

Advances and Applications in Mathematical Sciences Volume 22, Issue 7, May 2023, Pages 1569-1579 © 2023 Mili Publications, India

S-TOPOLOGICAL BE-ALGEBRAS

P. LAKSHMI KUMARI¹ and V. THIRUVENI²

¹Research Scholar

²PG and Research Department of Mathematics Saiva Bhanu Kshatriya College (Affiliated to Madurai Kamaraj University) Aruppukottai, Tamil Nadu, India E-mail: laksnagarajan@gmail.com thiriveni2009@gmail.com

Abstract

In this paper, we introduce the concept of S-topological BE-algebras (STBE-algebras) as a generalization of the concept of topological BE-algebra by using the concepts of semi-open sets and prove some of its properties. We also introduce the topological concepts, open sets, closed sets, interior and closure in STBE-algebras and arrive at the topological properties of STBE-algebras.

1. Introduction

In [4] H. S. Kim and Y. H. Kim introduced the notion of BE-algebras, which is a generalization of BCK-algebras. They also introduced the notion of commutative BE-algebras and studied their properties and characterization. In [6], S. Mehrshad and J. Golzarpoor studied the topological BE-algebras and discussed their properties. In [7], M. Jansi and V. Thiruveni introduced the notion of ideals in TSBF-algebras. In this paper, we introduce the notion of S-topological BE-algebras. In this way, we study the connection between BE-algebras and topology and discuss some of its properties. The concept of S-topological BE-algebras is a generalization of the concept of topological BE-algebras. An S-topological BE-algebra is a BE-algebra X together with a special type of topology that makes the operation defined on X, S-topological continuous.

²⁰²⁰ Mathematics Subject Classification: 06F35, 54A10, 54A05.

Keywords: BE-algebra, S-topology, open sets, semi-open sets, semi-closed sets, filters. Received April 3, 2022; Accepted May 16, 2022

2. Preliminaries

Definition 2.1 [4]. A BE-algebra (X, *, 1) of type (2, 0) (A non-empty set together with a binary operation * and a constant 1) satisfying the following conditions.

1. x * x = 12. x * 1 = 13. 1 * x = x4. $x * (y * z) = y * (x * z), \forall x, y, z \in X.$

Definition 2.2 [11]. A non-empty subset *A* of a BE-algebra *X* is called a sub-algebra of *X* if $x * y \in A$, $\forall x, y \in A$.

Definition 2.3 [11]. A non-empty subset I of a BE-algebra X is called an ideal of X if

1. $\forall x \in X \text{ and } \forall a \in I \Rightarrow x * a \in I$

2. $\forall x \in X \text{ and } \forall a, b \in I \Rightarrow (a * (b * x)) * x \in I$

Definition 2.4 [5].

(i) A subset A of a topological space is said to be semi-open if $A \subseteq \overline{Int A}$.

(ii) The complement of semi-open set is called semi-closed.

(iii) The semi-closure of a subset A of a topological space is the intersection of all semi-closed set containing A. It is denoted by \overline{A}^s .

(iv) A subset A of a topological space is said to be regular-open if $A = \overline{Int A}$.

Definition 2.5 [10]. A topological space (X, τ) is called semi- T_1 if for each two distinct points $x, y \in X$ there exists two semi-open sets U and V such that U contains x but not y and V contains y but not x.

Definition 2.6 [10]. A topological space (X, τ) is called semi- T_2 if for each two distinct points $x, y \in X$ there exists two disjoint semi-open sets U and V such that $x \in U$ and $y \in V$.

Definition 2.7 [6]. Let (X, *, 1) be a BE-algebra and $F \subseteq X$. The F is a filter when it satisfies the following conditions.

1. $1 \in X$. 2. If $1 \neq x \in F$ and $x * y \in F$, then $y \in F$.

3. S-Topological BE-algebras

Definition 3.1. A BE-algebra (X, *) together with a topology τ is called a S-topological BE-algebra (STBE-algebra) if the function $f: X \times X \to X$ given by f(x, y) = x * y, which satisfies the condition that for each open set M containing x * y, there exists an open set U containing x and a semi-open set V containing y such that $U * V \subseteq M, \forall x, y \in X$.

Example 3.2. Consider a BE-algebra $X = \{1, a, b, c, d\}$ with the following Cayley table.

*	1	а	b	с	d
1	1	а	b	с	d
a	1	1	b	с	d
b	1	a	1	с	с
с	1	1	b	1	b
d	1	1	1	1	1

Consider $\tau_s = \{X, \phi, \{a, c, d\}, \{b, d\}\}$. Clearly, * is S-topologically continuous. Then $(X, *, \tau_s)$ is a STBE-algebra.

Theorem 3.3. Let $(X, *, \tau_s)$ be a STBE-algebra, $A \subseteq X$ and $x \in X$. Then the following conditions hold.

1. $\overline{A} * x \subseteq \overline{A * x}$

2. If $\overline{A} * x$ is closed, then $\overline{A} * x = \overline{A * x}$.

Proof. 1. Let $y \in \overline{A} * x$ and M be any open set containing y. Then $y = a * x, a \in \overline{A}$.

Since X is a STBE-algebra, there exists an open set U of a and a semiopen set V of x such $U * V \subseteq M$.

Since $a \in \overline{A}$, every open set of a intersects A. So, there is an element b such that $b \in A \cap U$.

Therefore, $b * x \in A * x$ and $b * x \in U * x \subseteq U * V \subseteq M$.

That is every open set *M* of *y* contains an element b * x from A * x.

Hence $y \in \overline{A * x}$. So, $\overline{A} * x \subseteq \overline{A * x}$.

2. Let $\overline{A} * x$ is closed. Let $y \in \overline{A * x}$.

Suppose $y \notin \overline{A} * x$. Then $y \in (\overline{A} * x)^c$.

Since $\overline{A} * x$ is closed, $(\overline{A} * x)^c$ is open. Clearly, $A * x \subseteq (\overline{A} * x)^c$. So, $A * x \cap (\overline{A} * x)^c = \phi$.

Now, since $y \in \overline{A * x}$, every open set of y intersects A * x. So $A * x \cap (\overline{A} * x)^c \neq \phi$, which is a contradiction. Therefore, $y \in \overline{A} * x$, which implies $\overline{A * x} \subseteq \overline{A} * x$.

From 1 it follows that $\overline{A} * x = \overline{A * x}$.

Theorem 3.4. Let $(X, *, \tau_s)$ be a STBE-algebra, $A \subseteq X$ and $x \in X$. Then the following conditions hold.

1. $x * \overline{A}^s \subseteq \overline{x * A}$

2. If $x * \overline{A}^s$ is closed, then $* \overline{A}^s = \overline{x * A}$.

Proof. Let $y \in x * \overline{A}^s$ and M be any open set containing y. Then $y = x * a, a \in \overline{A}^s$.

Since X is a STBE-algebra, there exists an open set U of x and a semiopen set V of a such that $U * V \subseteq M$.

Since $a \in \overline{A}^s$ every semi-open set of a intersects A. So, there is an element b such that $b \in A \cap V$.

Therefore, $x * b \in x * A$ and $x * b \in x * V \subseteq U * V \subseteq M$.

That is every open set *M* of *y* contains an element x * b from x * A.

Hence $y \in \overline{x * A}$. So, $x * \overline{A}^s \subseteq \overline{x * A}$. 2. Let $x * \overline{A}^s$ is closed. Let $y \in \overline{x * A}$. Suppose $y \notin x * \overline{A}^s$. Then $y \in (x * \overline{A}^s)^c$. Since $x * \overline{A}^s$ is closed, $(x * \overline{A}^s)^c$ is open. Clearly, $x * A \subseteq (x * \overline{A}^s)^c$. So, $x * A \cap (x * \overline{A}^s)^c = \phi$.

Now, since $y \in \overline{x * A}$, every open set of y intersects x * A. So $x * A \cap (x * \overline{A}^s)^c \neq \phi$, which is a contradiction. Therefore, $y \notin x * \overline{A}^s$, which implies $\overline{x * A} \subseteq x * \overline{A}^s$.

From 1 it follows that $\overline{x * A} = x * \overline{A}^s$

With similar argument, we can prove the following theorem.

Theorem 3.5. Let $(X, *\tau_s)$ be a STBE-algebra and $A, B \subseteq X$. Then the following conditions hold.

- 1. $\overline{A} * \overline{B} \subseteq \overline{A * B}$
- 2. If $A * \overline{B}^s \subseteq \overline{A * B}$ is closed, then $\overline{A} * \overline{B} = \overline{A * B}$.

Theorem 3.6. In a commutative STBE-algebra, $(X, *, \tau_s)$ if $\{1\}$ is open, then τ_s is discrete.

Proof. Let $x \in X$. Assume that, $\{1\}$ is open.

Since, x * x = 1, $\forall x \in X$ and X is a STBE-algebra, for every open set M of 1, there exists an open set U of x and a semi-open set V of x such $U * V \subseteq M$. In particular, $U * V \subseteq \{1\}$.

Let $G = U \cap V$. Now, $x \in G$ and G is semi-open.

Let $y \in G$ and $x \neq y$. Then x * y = y * x = 1, this implies that x = y (since *X* is commutative).

Hence $G = \{x\}$ is open also.

Since x is arbitrary, $\{x\}$ is open for all $x \in X$. Hence τ_s is discrete.

Theorem 3.7. Let $(X, *, \tau_s)$ be a STBE-algebra and Y be an open BEsubalgebra of X, then Y is also an STBE-algebra with respect to a subspace topology τ_{Y_s} .

Proof. Let $x * y \in Y$. Since *Y* is a subalgebra of *X*, $x, y \in Y$.

Let *M* be an open set of x * y in *Y*. Then $M = Y \cap U$, where *U* is an open set of x * y in *X*.

Since X is a STBE-algebra, there exists open set W_1 of x and semi-open set W_2 of y such that

 $W_1 * W_2 \subseteq U.$

Then $W_1 \cap Y$ is an open set of x in Y and $W_2 \cap Y$ is a semi-open set of y in Y.

Now, $(W_1 \cap Y) * (W_2 \cap Y) = (W_1 * W_2) \cap Y \subseteq U \cap Y = M$.

Hence, $(Y, *, \tau_{Y_s})$ is an STBE-algebra.

Definition 3.8. A non-empty subset A of a STBE-algebra $(X, *, \tau_s)$ is called an ideal of X if the following conditions are satisfied.

1. $1 \in A$.

2. For all $x \neq 1$ in X and for all $y \in A$, if $x * y \in A$ then $x \in A$.

Theorem 3.9. Let $(X, *, \tau_s)$ be a STBE-algebra and A be an open ideal in X, then A is semi-closed and regular-open.

Proof. Suppose $x \notin A$.

Since x * x = 1, for every open set *A* of 1, there exists open set *M* of *x* and a semi-open set *N* if *x* such that $M * N \subseteq A$.

Let $G = M \cap N$. Then $x \in G$ and G is semi-open. Also, $G * G \subseteq M * N \subseteq A$.

Since *A* is an ideal, we have $G \subseteq A$, which is a contradiction.

Thus, $G \subseteq X \setminus A$. Then A is semi-closed.

Since A is open, we have $A \subseteq Int(\overline{A})$. Therefore $A = Int(\overline{A})$. Hence A is regular open.

Theorem 3.10. If A is an ideal of a STBE-algebra X and $1 \in Int(A)$, then A is open.

Proof. Let $x \in A$. Since $1 \in Int(A)$, there is an open set U of 1 such that $U \subseteq A$.

Since, *X* is a STBE-algebra, for every open set *U* of 1, there exists an open set W_1 of *x* and a semiopen set W_2 of *x* such that $W_1 * W_2 \subseteq U$.

Therefore, $W_1 * W_2 \subseteq A$ and $W_1 * x \subseteq U$.

Let $y \in W_1 \cap (X \setminus A)$. Then $y * x \in A$. This implies $x \in A$ for $x \in A$ and A is an ideal.

This is not possible. Therefore, $W_1 \subseteq A$. Thus $x \in Int(A)$, $\forall x \in A$. Hence A is open.

4. Properties of S-Topological BE-algebras

Definition 4.1. A S-topological BE-algebra $(X, *, \tau_s)$ is called semi- T_1 STBE-algebra if for each pair of distinct points $x, y \in X$ there exist two semi-open set U and V such that U contains x but does not contain y and V contains y but does not contain x.

Definition 4.2. A topological BE-algebra $(X, *, \tau_s)$ is called semi- T_2 STBE-algebra if for each pair of distinct points $x, y \in X$ there exist two disjoint semi-open set U and V such that $x \in U$; $y \notin U$ and $y \in V$; $x \notin V$.

Theorem 4.3. Let $(X, *, \tau_s)$ be a BE-algebra. If $\{1\} \in \tau$ is closed, then X is semi- T_2 STBE-algebra.

Proof. Let $\{1\}$ be closed and let $x, y \in X$ such that $x \neq y$. Then $x * y \neq 1$ or $y * x \neq 1$.

Without loss of generality, we assume that $y * x \neq 1$.

Then there exists an open set U containing y and a semi-open set V containing x such that $U * V \subseteq X \setminus \{1\}$. Hence X is semi- T_2 STBE-algebra.

Theorem 4.4. Let $(X, *, \tau_s)$ be a T_0 STBE-algebra. Then X is semi T_1 STBE-algebra.

Proof. Let $x, y \in X$ such that $x \neq y$. Then either $x * y \neq 1$ or $y * x \neq 1$ Assume that $x * y \neq 1$. Since X is T_0 , there exists an open set U containing either one of $x * y \neq 1$ or 1 but not both.

Let us assume that $x * y \in U$ and $1 \notin U$.

Now, as $(X, *, \tau_s)$ is a semi S-topological BE-algebra, there exists an open set V containing x and a semi-open set W containing y such that $V * W \subseteq U$. These V and W are the required semi open sets containing x and y respectively.

If $1 \in U$ and $x * y \notin U$ then $x * x = 1 \in U$. Then there exists an open set *V* containing *x* and a semiopen set *W* containing *x* such that $V * W \subseteq U$ and $y * y = 1 \in U$.

Then there exists an open set V_1 containing y and a semi-open set W_1 containing y such that $V_1 * W_1 \subseteq U$.

Take $G = V \cap W$ and $H = V_1 \cap W_1$. Then G and H are two semi-open sets such that $x \in G$ and $y \in H$. Also, $y \notin G$ and $x \notin H$.

Hence $(X, *, \tau)$ is a semi- T_1 STBE-algebra.

Definition 4.5. Let $(X, *, \tau_s)$ be a STBE-algebra and $F \subseteq X$. Then F is a filter if it satisfies the following conditions.

1. $1 \in F$.

2. If $1 \neq x \in F$ and $x * y \in F$, then $y \in F$.

Example 4.6. Consider Example 3.2. Here * is S-topological continuous. Also, $\{1, b\}$ is a filter in *X*.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 7, May 2023

1576

Theorem 4.7. Let $(X, *, \tau_s)$ be a STBE-algebra and F be a filter in X. If 1 is an interior point of F, then F is semi-open.

Proof. Suppose that 1 is an interior point of F. Then there exists M containing 1 such that $M \subseteq F$.

Let $x \in F$. Since x * x = 1, there exists an open set U containing x and a semi-open set V containing x such that $U * V \subseteq M \subseteq F$.

Now, for each y in the semi-open set V, we have $x * y \in F$.

Since F is a filter and $x \in F$, we have $y \in F$. Therefore, $x \in W \subseteq F$. Hence F is semi-open.

Theorem 4.8. Let $(X, *, \tau_s)$ be a STBE-algebra and F be a filter in X. If F is open, then it is closed.

Proof. Let *F* be a filter in *X* which is open. We show that $X \setminus F$ is also open.

Let $x \in X \setminus F$. Since *F* is open, 1 is an interior point of *F*.

Since x * x = 1, there exists open set *V* containing *x* and a semi-open set *W* containing *x* such that

 $V * W \subseteq F.$

We claim that $V \subseteq X \setminus F$.

If *V* is not a subset of $X \setminus F$, then there exists an element $y \in V \cap F$.

Now, for each $z \in W$, we have $y * z \in V * W \subseteq F$. Since *F* is a filter and $y \in F$, we have $z \in F$.

Thus $W \subseteq F$, which implies $x \in F$, which is a contradiction.

Hence, $x \in V \subseteq X \setminus F \Rightarrow X/F$ is open. Therefore, *F* is closed.

Definition 4.9. Let $(X, *, \tau_s)$ be a STBE-algebra, U be a non-empty subset of X and $a \in X$.

The subsets Ua and aU are defined as follows.

 $Ua = \{x \in X : x * a \in U\} \text{ and } aU = \{x \in X : a * x \in U\}.$

Also, if $K \subseteq X$ we get $KU = \bigcup_{a \in K} aU$ and $UK = \bigcup_{a \in K} Ua$.

Theorem 4.10. Let $(X, *, \tau_s)$ be a STBE-algebra and U be two nonempty subsets of X. Then

1. If U is open, then Ua is open and aU is semi-open.

2. If U is closed, then Ua is closed and aU is semiclosed.

Proof. 1. Let *U* be an open set, $a \in X$ and $x \in Ua$.

Then $x * a \in U$. Then there exists an open set W containing x and a semi-open set A containing a such that $W * A \subseteq U$, $x * a \in Wa \subseteq U$. Thus $W * a \subseteq U$. So, $x \in W \subseteq Ua$ is open.

To prove aU is semi-open, let $x \in aU \Rightarrow a * x \in U$.

Then there exists an open set A containing a and a semi-open set W_1 containing x such that

 $A * W_1 \subseteq U, a * x \in aW_1 \subseteq U$. Thus $a * W_1 \subseteq U$. So, $x \in W_1 \in aU \Rightarrow aU$ is semiopen.

2. Let U be closed. Then U^c is open.

So, by 1, $U^{c}a$ is open and aU^{c} is semi-open.

Clearly, $(Ua)^c = U^c a$ and $(aU)^c = aU^c$. Hence $(aU)^c$ is open and $(aU)^c$ is semi-open.

 \Rightarrow Ua is closed and aU is semiclosed.

5. Conclusion

We have studied the properties of STBE-algebras using the topological concepts like open sets, semi-open sets, closed sets and filters. We can further study about various topologies induced by the filters.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 7, May 2023

1578

Acknowledgement

The research is supported by the PG and Research Department of Mathematics of Saiva Bhanu Kshatriya College, Aruppukottai. The authors would like to thank the department.

References

- Alias B. Khalaf and Fatima W. Ali, On S-topological BCK-algebra, Journal of University of Dohok 23(1) (2020), 199-208.
- [2] Andrzej Walendziak, On commutative BE-algebras, Scientiae Mathematicae Japonicae (e-2008), 585-588.
- [3] R. Englking, General Topology, PWN-Polish Scientific Publishers, Warsaw, 1977.
- [4] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae 66 (2007), 113-128.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [6] S. Mehrshad and J. Golzarpoor, On topological BE-algebras, Mathematica Moravica 21(2) (2017), 1-13.
- [7] M. Jansi and V. Thiruveni, Complementry role of ideals in TSBF-algebras, Malaya Journal of Mathematik 8(3) (2020), 1037-1040.
- [8] M. Jansi and V. Thiruveni, Topological structures on BF-algebras, International Journal of Innovative Research in Science Engineering and Technology 6 (2017), 22594-22600.
- [9] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI algebras, Inform, Sci. 178 (2008), 2466-2475.
- [10] S. N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395-402.
- [11] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Univesitatii Oradea Fasc. Matematica, Tom XIX(1) (2012), 33-44.