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Abstract 

A three-species ecosystem with a prey-predator interaction and a third species that serves 

as a predator’s host is examined for stability. Species interact in biological system for the sake of 

survival and to meet their dietary needs. During the inter-competition encounter, the prey uses 

several protective techniques to flee from predator. Predator species are both commensal to the 

host and competitors to the prey. The model is Holling Type-II functional responses in nonlinear 

differential equations. The suggested system investigates all the existing equilibrium points of 

the three species, bionomic equilibrium, optimal prey harvesting, in addition to the mortality 

rates of commensal and host species. The system subsequently analyses the stability of 

coexistence both locally and globally in an optimistic equilibrium condition. 
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1. Introduction 

The ecological system consists of all the organisms and exposes the 

interaction between the many species in the habitat. Species interactions 

within biological webs involve four major types of two-way communication 

such as competition, commensalism, mutualism and predation for their 

physical space and nutrition diet. This paper mainly discussed the two 

contacts namely competition and commensalism. The interspecific 

competition occurs when members of diverse species struggle for shared 

resources. Commensalism is a symbiotic relationship in which members of 

one species obtain food, locomotion, refuge, etc., from the other (host) species 

neither wounded nor affected. Commensalism plays a crucial position in 

evolution while the interactions and adaptation accumulate over time. 

Lotka and Volterra [1, 21] defined the prey-predator dynamic system as a 

form of ordinary differential equations for a steady population density 

variable in the limit of the enormous size of the population. Several ecologists 

and mathematicians are part in contributing various modelling concepts of 

the prey-predator system in the population ecology for the treatises of H. I. 

Freedman, J. D. Murray and J. N. Kapur, [9, 10, 11]. Holling (1959) proposed 

non linear functional responses of this type based on a general argument 

about the allocation of a predator’s time between two actions such as prey 

finding and prey handling. The functional response is the rate at which a 

predator consumes prey effectively attacked as a function of prey density. It 

depicts how a predator reacts to changes in its prey’s density. Holling and 

Hassell (1978) classified functional response into three categories. Type-I has 

a linear relationship between prey population and the largest number of prey 

killed, whereas Type-II has a monotonic relationship between prey 

population and the fraction of prey consumed. Type-III is characterized by a 

sigmoid relationship, in which the significant percentage of prey consumed is 

positively density-dependent over certain prey population regions. 

Many researchers work deals with Holling Type-II and Type-III 

functional responses with an effective manner in the population interaction 

and harvesting function. S. T. Motuma [18] described the functional response 

of the prey-predator system and harvesting function in the population 

interaction. G. M. Vijaya Lakshmi [7] focused on Holling Type-II functional 
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responses with square root performing in the effect of herd behaviour of prey-

redactor model. M. N. Srinivas, et al. [15] determined the stochastic analysis 

and optimal harvesting strategy of a two-species commensal system. K. 

Madhusudhan Reddy, et al. [12] analyzed the prey harvesting and alternative 

food for predators in the two-species ecological system. Debasis Mukherjee [6] 

explained the effect of refuge and immigrations of the three species dynamic 

model where such a predator consumes of two opposing species. Geremew 

Kenassa Edessa, et al. [8] considered three species ecosystem with a sigmoid 

functional response form D. Pal, et al. [5] studied the interval biological 

parameters for performing in the optimal harvesting of prey-predator system. 

M. Gunasekaran, et al. [14] inspected the optimal harvesting of all the three 

species with bionomic equilibrium. K. Sujatha, et al. [13] examines the 

optimal control of disease in Eco-Epidemiological system R. P. Gupta et al. 

[17] examine the bifurcation analysis and prey harvesting study made from 

the modified Leslie-Gower predator-prey model with Michaelis-Menten type 

B. Hari Prasad, et al. [3, 4] investigated the stability analysis of Syn-Eco-

System and Prey-Predator, Host-commensal with the mortality rate. 

Thadei Sagaamiko, et al. [20] investigate predator survival using a set of 

parameters, a threshold, and a death rate. Asifa Tassaddiq et al. [2] explores 

the ratio dependent in two dimensional model and this system implemented 

chaos control strategies, determined positive fixed point under Neimark 

sacker bifurcation and phase plane analysis. Yusrianto et al. [22] developed 

one prey and one predator model under constructing second type holling 

functional response for examines the threshold harvesting and stability 

analysis for the predator. Nijamuddin Ali et al. [16] investigate the prey-

predator food chain model and the study concentrated on the biological 

feasible equilibrium, Hopf-Andronov bifurcation with suitable parameters for 

the competitive species. Sahabuddin Sarwardi et al. [19] research focused on 

developing a competitive model and to build a type II functional response in 

holling for the fraction of prey habitat. This system feasibility determined 

with different stability condition. 

2. Representation of the Mathematical Model 

A second type Holling functional response is incorporated in the active 

growth of a prey-predator model with interspecific competition. The system 
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consists of Prey  ,1S  Predator  ,2S  and Host  .3S  Here predators are 

competing naturally with prey and commensal to the Host species. Mortality 

rates are inspected for commensal and host species. 

The following model was designed for holling Type-II functional response 

which claimed that the standard dealing time was zero and type-II response 

function was effectively transformed into a Lotka-Volterra model. 
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To determine the system’s stability, make certain assumptions for the 

above model. 
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The dimensionless version of the given model is shown below. 
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Let’s pretend that the average handling time is zero.  0h  

Therefore, the above model is composed as 

  Hxxyxx
dt

dx
 1  

  yyzxyyy
dt

dy
 1  

  zzz
dt

dz
 1  (2) 

The following assumptions were made by formulating the mathematical 

model (1) 

(i)     00,00 21  SS  and   003 S  are all positive initial conditions. 

Where    TSTS 21 ,  and  TS3  represent the prey, predator and host 

population densities respectively. 

(ii) In the nonexistence of predator, the local prey population grows up 

logistically with an underlying biological growth rate ,1a  having ecological 

carrying capacity ,1K  optimal harvesting rate 1qE  for the catching capability 

coefficient, and the effort given to the population .1S  

(iii) During the inter competition, the prey population will decrease 

exponential while compete with predator and vice versa for average handling 

time of predator ,hT  predator searching efficiency ‘b’ and consumption rate ‘e’ 

and to form the second type holling functional response. 

(iv) The predator population continues to expand logistically with growth 

rate ,2a  ecological carrying capacity 2K  and mortality rate 1m  in the 

presence of prey. 

(v) It was assumed that the predator acts as a commensal species C 

(coefficient of commensalism) and gets benefit from the host species for their 

alternative food. 

(vi) The host species is increased at the rate ,3a  ecological carrying 

capacity 3K  and mortality rate .2m  



 M. GUNASEKARAN and A. M. SARRAVANAPRABHU 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6218 

3. Stability Analysis of the Equilibrium State 

In this segment identified all the possible existence of equilibrium state 

and their stability analysed by equating 0,0 
dt

dy

dt

dx
 and 0

dt

dz
 are as 

follows. 

I. Trivial stability state 

(i) 0,0,0  zyx  

II. Axial stability state 

(ii) 0,0,1  zyHx  

(iii) 0,1,0 



 zyx  

(iv) 



 1,0,0 zyx  

III. The condition of one of the three species has been washed away 
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4. The Steady States and their Existence 

To analysis the dynamic steady state of the proposed model to apply the 

jacobian matrix at any subjective point of view is described by 
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The resultant of the deviation matrixes to express each equilibrium state 

is as follows. 

Proposition 1. The trivial stability state of the point  0,0,01E  which is 

always unstable if  ,1H  and ,  under positive growth rate of the 

each species. 

Proof. The system’s jacobian matrix at the trivial stability point 

 0,0,01E  is known by 
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The characteristic roots of  1EJ  is  21 ,1 H  and 

.3   Since growth rate of each species is higher than the mortality 

rate and the harvesting rate. Hence all the three characteristic roots are 

positive then the system  1EJ  is unstable. 

Proposition 2. The axial state in which predator and host free 

equilibrium point  0,0,12 HE   is unstable if    H1  and   

even the prey population is at high density level. 

Proof. The system’s jacobian matrix at the prey exist axial stability point 

2E  is identified by 
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The characteristic roots of  2EJ  is 

   HH 1,1 21  and .3   

Since 0,0 21   and .03   Hence the steady state of the system 

 2EJ  is unstable and saddle points exist. 
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Proposition 3. The axial state in which prey and host free balance point 
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Whereas the predator at high density level. 

Proof. The system’s jacobian matrix at the predator exist axial stability 
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The characteristic roots of  3EJ  is 

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and .3   Here one of the root 2  is negative and another two’s are 

positive. So, saddle point exists in this state of the equilibrium point. i.e., 

0,0 21   and 03   Hence the axial state of the system  3EJ  is 

unstable. 

Proposition 4. The axial state in which prey and predator free balance 

point 
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Whereas the host species at high density level.  

Proof. The system’s jacobian matrix at the host exist axial equilibrium 

point 4E  is recognized by 
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The characteristic roots of  4EJ  is 
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
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 1,1 21 H  

and .3   Here one of the roots 3  is negative and another two roots 

21,   are positive. So, saddle point exists in this state of the equilibrium 

point. i.e., 0,0 21   and .03   Hence the axial state of the system 

 4EJ  is unstable. 
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Proposition 5. The boundary state in which the host washed out the 

balance point 
       
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Proof. The system’s jacobian matrix at the prey and predator exist 
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The Characteristic equation of  5EJ  is 

      0,det,2  yxJyxJtrace  and 3  

The characteristic roots of the above equation is 

          0,det4,,
2

1 2
1  yxJyxJtraceyxJtrace  

          0,det4,,
2

1 2
2  yxJyxJtraceyxJtrace  and 

.3   

Where          0,,0,det4,
2

 yxJtraceyxJyxJtrace  and 

      .,,det4,
2

yxJtraceyxJyxJtrace   

Where 

                011,  HHyxJtrace  
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            

 
0
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11
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2









HH
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Since 0,0 21   and 03   (always). Hence the system of 

boundary state  5EJ  is unstable and saddle points exist. 
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Proposition 6. The boundary state in which the prey washed out balance 

point 
     

















 ,,06E  is asymptotically stable if 

         H1  else the state is unstable if 

        .1  H  

Proof. The system’s jacobian matrix at the predator and host exist 

boundary stability point 6E  is predictable by 

 



1

6EJ  

      

              























00

001 H

  

The characteristic equation of  6EJ  is  

           





 








 


 H1
 

 
0












 

The characteristic roots of the above equation is 

          








 21 ,

1 H
 and 

 
.3 


  

Case (i). Since 01   if         0,1 2  H  

(always) and 03   (always). Hence the system of state  6EJ  is 

asymptotically stable. 

Case (ii). Since 01   if         0,1 2  H  

(always) and 03   (always). Hence the system of boundary state  6EJ  is 

unstable and saddle points exist. 

Proposition 7. The boundary state in which the predator washed out 
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balance point  
 












 ,0,17 HE  is asymptotically stable if 

        H1  and unstable if       .1  H  

Proof. The system’s jacobian matrix at the prey and host exist boundary 

stability point 7E  is knowable by 

 

   
      

























00

0
1

0

011

7
H

HH

EJ  

The Characteristic equation of  7EJ  is 

  
      

   0
1

1 













H
H  

The characteristic roots of above equation becomes 

 
      







H
H

1
,1 21  and 3   

Case (i). Since 01   (always), 03   (always) and 02   

      .1if  H  Hence the state of equilibrium point  7EJ  

is asymptotically stable. 

Case (ii). Since ,01   (always) 03   (always) and 02   

      .1if  H  Hence the state of equilibrium point  7EJ  

is unstable and saddle points exist. 

Proposition 8. The Positive interior equilibrium point 

              




















 ,

1
,

1
8

HH
E  

is locally asymptotically stable, if 0,0 31  hh  and   .321 hhh   

Proof. Let us assume that prey, predator and host species are exists 

equilibrium point 8E  is standard by Let  



















33

232221

1211

8

00

0

a

aaa

aa

EJ  
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      
,

1
11 




H
a  

     
,

1
12 










H
a  

     
,

1
21 










H
a  

      
,

1
22 











H
a  

     
,

1
23 










H
a  

.33 a  

The characteristic equation of  8EJ  is 

032
2

1
3  hhh  

where ,3322111 aaah   

., 332112332211321122211331133222 aaaaaahaaaaaaaah   

Now the result of Routh-Hurwitz criterion analyse the coexistence steady 

state under the positive interior equilibrium state which has negative real 

part iff 0,0 31  hh  and .321 hhh   Hence all the three characteristic 

roots are negative then the steady state of the equilibrium point  8EJ  is 

always asymptotically stable. 

5. Global Steadiness Analysis 

In this part, to prove the Global stability of all the possible equilibrium 

states of the three species eco system by suitable Lyapunov function of the 

given model. 

5.1 Global stability of the steadiness state  yxE ,5  

Theorem. The boundary equilibrium state  yxE ,5  is globally 

asymptotically stable. 
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Proof. Let we apply the Lyapunov function for interior balance points 

5E  as follow 

 
































y

y
yyy

x

x
xxxyxL lnln,  

The time derivate of L along the solution of equation (2) is 






 





 
y

y

dt

dy

x

x

dt

dx

dt

dL
11  

Substitute Hyx 1  and Hyx 1  and  xy  

   













 








 


22
1

22
yyxx

dt

dL
 

0
dt

dL
 

 Thus the steadiness state 5E  is globally asymptotically stable. 

5.2 Global stability of the steadiness state  zyE ,6  

Theorem. The boundary equilibrium state  zyE ,6  is globally 

asymptotically stable. 

Proof. Consider the Lyapunov function for interior balance points 6E  as 

described by  

 
































z

z
zzz

y

y
yyyzyL lnln,  

Differentiate ‘L’ w. r. to ‘t’ then the form reduced as 






 





 
z

z

dt

dz

y

y

dt

dy

dt

dL
11  

      zzzzyyy  

 Substitute  zy  and  z  

   













 








 


22
22

zzyy
dt

dL
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 0
dt

dL
 

Thus the steadiness state 6E  is globally asymptotically stable. 

5.3 Global stability of the steadiness state  zxE ,7  

Theorem. The boundary equilibrium state  zxE ,7  is globally 

asymptotically stable. 

Proof. Let us consider the following Lyapunov function for the interior 

balance points 7E  as 

 
































z

z
zzz

x

x
xxxzxL lnln,  

Differentiate ‘L’ w. r. to ‘t’ then the form reduced as 






 





 
z

z

dt

dz

x

x

dt

dx

dt

dL
11  

      zzzHxxx 1  

Substitute Hx 1  and  z  

    22
zzxx

dt

dL
  

0
dt

dL
 

Thus the steadiness state 7E  is globally asymptotically stable. 

5.4 Global stability of the steadiness state  zyxE ,,8  

Theorem. The Positive interior equilibrium state  zyxE ,,8  is globally 

asymptotically stable. 

Proof. Let us define the Lyapunov function for the positive definite 

equilibrium points 8E  as follows 
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The differential of ‘L’ w.r.to time ‘t’ then reduce to the following form 






 





 





 
z

z

dt

dz

y

y

dt

dy

x

x

dt

dx

dt

dL
111  

       zxyyyHyxxx 1  

   zzz  

Substitute  zxyHyx ,1  and  z  

     













 








 








 


222
1

222
zzyyxx

dt

dL
 

0
dt

dL
 

Therefore, L is positive definite of the system and also   .0,, zyxL  

Hence the steadiness state 8E  is globally asymptotically stable. 

6. Bionomic Equilibrium 

The system examine on the subject of the bionomic equilibrium which is 

grouping of biological and economic equilibrium. When the total profit earned 

from selling collected biomass equals the whole cost of harvesting effort, an 

economic equilibrium is considered to have been reached. 

The biological balance is defined as follows: 

0
dt

dx
 

Assume that C is the cost of harvesting each unit effort of prey species (x) 

and P is the price of each unit biomass of prey. 1RR   specifies the net 

revenue or economic rent at any moment t. 

Let   ,11 ECPqxR   where 1R  is the net revenue for prey. 

The equations for the bionomic equilibrium 

             321 EEEzyx  are given below. 

  01  Hxxyxx  (3) 



 M. GUNASEKARAN and A. M. SARRAVANAPRABHU 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6228 

Let us assume that the harvesting effect 1qEH   then rewrite the above 

equation becomes 

  01 1  xqExyxx  (4) 

  01  yyzxyyy  (5) 

  01  zzz  (6) 

  011  ECPqxR  (7) 

In terms of achieving bionomic equilibrium, we observe the following 

occurrences. 

Instance (i). The entire system would be stopped if ,PqxC   the cost is 

more than profits for the three species. 

Instance (ii). The entire system would be in function if ,PqxC   the 

cost is less than profits for all the three species and if it is a positive value. 

     








  z

zx
y

Pq

C
x ,,  

Now substitute  x  in equation (4)-(6), then we get 

       

















 

zx

Pq

C

q
yx

q
E 1

1
1

1
1  

Now  E  to be positive i.e., 

  01 E  if 












zx

Pq

C
1  (8) 

Hence the nontrivial bionomic equilibrium point          1Ezyx  

exist if the criterion (8) holds. 

7. Optimal Harvesting Policy 

The present value J is a revenue stream that runs continuously by. 

 




0

11 ,,, dteEzyxRJ t  



A SECOND TYPE OF HOLLING FUNCTIONAL RESPONSE … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6229 

Where 1R  the net revenue or economic rent is specified as 

    111 ,,, ECPqxEzyxR   

Where  represent the instantaneous annual rate of discount rate. The 

focus of this work maximize J subject to the model of the state 

 max110 EE   by constructing the Hamiltonian function is described by 

     xqExyxxECPqxeH t
111 1    

     zzzyyzxyyy  11 32  

Where 21,   and 3  are the adjoint variable 

By using Pontryagin’s maximum principle 
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E

H 321
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The control variable 1E  satisfying the constraints 

    qxCPqxet
E

H t
1

1




   

Now, Plan to maximize the Hamiltonian H by obtaining an optimal 

equilibrium         .1  Ezyx  Because the Hamiltonian H in the control 

variable 1E  is linear. Extreme control or singular controls are two 

possibilities for optimal control. 

As a result,   .max11 EE   Where   ,0 t  i.e.,  qxCPe t  
1  

  ,min11 EE   where   ,0 t  i.e.,  ,1 qxCPe t    

,01 E  where   ,0 t  i.e.,  qxCPe t  
1  (9) 

The optimal control in this situation is known as singular control, and the 

preceding equation is a criterion for maximum of Hamiltonian H. The 

maximum principle of Pontryagin’s for adjoint equations is 


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    yqEyxPqEe
dt

d t 
 

2111
1 21  (10) 
















y

H

dt

d 2  

    


zxyx
dt

d
221

2  (11) 












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

z

H

dt

d 3  

    


zy
dt

d
232

3  (12) 

Now, try to determine the problem’s optimal equilibrium solution. 

As a result zyx ,,  and 1E  can be considered constants 

Equation (11) is written in the following way teAA
dt

d 


221
2  

Where   zxyA 21  and    qxCPxA2  solution 

is known by 

 




1

2
2 A

eA t

 (13) 

The above equation (10) can also be written as teAA
dt

d 


413
1  

where 13 21 qEyxA    and 
 











 

1

2
14 A

A
yPqEA  whose 

solution is specified by 

 




3

4
1 A

eA t

 (14) 

Equation (12) can be written as teAA
dt

d 


635
3  

Where  zA 25  and 
 

 

1

2
6 A

A
yA  solution is given by 
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 




5

6
3 A

eA t

 (15) 

Equating (9) and (14) then we get the singular path 

 
 

 

3

4

A

A
qxCP  (16) 

Thus equation (16) can also be written as 

   
 

0
3

4 


 

A

A
qxCPxF  (17) 

In the interval   ,0 Kx    there is only one positive root 
  xx  of 

  .0xF  The inequalities listed below are true     ,0,00  KFF  

  ,0xF  for   .0x  

Where 






  zzyyxx ,,  and 

We get      yx
q

E 1
1

 where 












zx
y  

Here   0E  if   yx1  

From the equation (13), (14) and (15), we examine if 321 ,,   is a time-

independent optimal equilibrium. Thus they remain bounded as .t  

From the equation (16), also have 

 
 

0
3

4 


 

A

A
qxCP  as .  

Thus, the prey species net economic revenue is 

         .011  EzyxR  

This implies that an indefinite discount rate would result in net economic 

revenue approaching zero, and the fishery will stay closed. 

8. Conclusion 

The proposed model investigates the dynamic stability analysis of the 

syn-ecosystem consisting of one host with commensal predator and prey. It is 

observed that the model depicts the predator can able to survive in the 

habitat for getting benefit from the host species even though the prey species 
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were not available for a long time. The system was initially characterized by 

Holling Type-II functional response after rescaling the model rehabilitated by 

nonlinear format. The stability states were analyzed the eight equilibrium 

states and derive local and global criteria under the positive coexistence state 

by suitable Routh-Hurwitz criterion and Lyapunov Function respectively. 

Finally, the system computes the bionomic equilibrium and uses Pontryagin’s 

maximum principle to determine optimal harvesting technique for the prey 

species. 

References 

 [1] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, (1925). 

 [2] Asifa Tassaddiq, Muhammad Sajjad Shabbir, Qamar Din, Khalil Ahamad and Sabeena 

Kazi, A ratio-dependent nonllinear prdeator-prey Model with certain dynamic results, 

IEEE Access 8 (2020), 195074-195088. 

 [3] B. Hari Prasad and M. Sundar Ram, Modelling on eco-system consisting of two host-one 

commensal with mortality rates for the second and third species, International Journal 

of Advanced Research in Computer Science and Software Engineering, ISSN:2277-128X, 

7 (2011). 

 [4] B. Hari Prasad and Pattabhi Ramacharyulu, On the Stability of a Four Specie: A Prey-

Predator-Host-Commensal-Syn-Eco-System-VIII, Pelagia Research Library 2(5) (2011), 

197-206. 

 [5] D. Pal, G. S. Mahaptra and G. P. Samanta, Optimal harvesting of prey-predator with 

interval biological parameters: A bioeconomic model, Mathematical Biosciences 241(2) 

(2013), 181-187. 

 [6] Debasis Mukherjee, The effect of Refuge and Immigration in a Predator – Prey System 

in the Presence of a Competitor for the Prey, Elesevier-Nonlinear Analysis: Real World 

Application (2016), 277-287. 

 [7] G. M. Vijaya Lakshmi, Effect of Herd Behaviour Prey-Predator Model with Competition 

in Predator Elesevier-Material Today: proceeding (2020), 

https://doi.org/10.1016/j.matpr.2020.04.166. 

 [8] Geremew Kenassa Edessa and Purnachandra Rao Koya, Modelling and stability analysis 

of a three species ecosystem with the third species response to the first species in 

sigmoid functional response form, Mathematical Modelling and Applications 5(3) (2020), 

156-166. 

 [9] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel 

Decker, New York, (1980). 

 [10] J. D. Murray, Mathematical biology, Biomathematics, Springer, Berlin, Germany 19 

(1989). 

 [11] J. N. Kapur, Mathematical Model in Biology and Medicine, Affiliate East West, (1985).  

https://www.sciencedirect.com/journal/mathematical-biosciences


A SECOND TYPE OF HOLLING FUNCTIONAL RESPONSE … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6233 

 [12] K. Madhusudhan Reddy and K. Lakshmi Narayan, A prey-predator with an alternative 

food for the predator and optimal harvesting of the prey, Pelagia Research Library 2(4) 

(2011), 451-459. 

 [13] K. Sujatha and M. Gunasekaran, Optimal control of disease of an eco-epidemiological 

prey-predator system, International Journal of Research and Analytical Reviews, E- 

ISSN: 2348-1269, P- ISSN: 2349-5138, 6(1) (2019). 

 [14] M. Gunasekaran and A. M. Sarravanaprabhu, Optimal harvesting of three specie 

dynamics model with bionomic equilibrium, Turkish Journal of Computer and 

Mathematics Education 11(3) (2020), 1339-1350. 

 [15] M. N. Srinivas, K. Shiva Reddy and A. Sabarmathi, Optimal harvesting strategy and 

stochastic analysis for a two species commensaling system, Engineering Physics and 

Mathematics- Elsevier B.V on behalf of Ain Shams Engineering Journal 5 (2013), 515-

523. 

 [16] Nijamuddin Ali and Santabrata Chakravarty, Stability analysis of a food chain model 

consisting of two competitive preys and one predator, Nonlinear Dynamics-Springer 82 

(2015), 1303-1316. 

 [17] R. P. Gupta and Peeyush Chandra, Bifurcation analysis of modified leslie-gower 

predator-prey model with michaelis-menten type prey harvesting, Elsevier-Journal of 

Mathematical Analysis and Applications 398 (2013), 278-295. 

 [18] S. T. Motuma, Mathematical model of population interactions with functional responses 

and harvesting function, International Journal of Scientific Research in Mathematical 

and Statistical Sciences 7(3) (2020), 33-38. 

 [19] Sahabuddin Sarwardi, Prashanta Kumar Mandal and Santanu Ray, Analysis of a 

competitive prey-predator system with a prey refuge, Bio Systems-Elesevier 110 (2012), 

133-148. 

 [20] Thadei Sagamiko, Vladimir Kozlov and Uno Wennergren, Predator survival analysis of a 

prey-predator system with prey species pool, Scientific African-Elesevier 14 (2021), 

e00982. 

 [21] V. Volterra, Lecons sur la théorie mathématique de la lutte pour la vie, Gautheir -

Villars, Paris, (1931). 

 [22] Yusrianto, S. Toaha and Kasbawati, Stability analysis of prey predator model with 

holling II functional response and threshold harvesting for the predator, Journal of 

Physics: Conference Series 1341 (2019), 062025. 


