OSCILLATORY BEHAVIOUR OF FOURTH ORDER DELAY DIFFERENCE EQUATIONS

G. JAYABARATHY, J. DAPHY LOUIS LOVENIA, A. P. LAVANYA and D. DARLING JEMIMA

1,2Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore, Tamil Nadu, India
E-mail: jayabarathyg@karunya.edu.in
daphy@karunya.edu
${ }^{3}$ Department of Mathematics
Sri Krishna College of Engineering and Technology
Coimbatore, Tamil Nadu, India
E-mail: algebralavanya@gmail.com
${ }^{4}$ Department of Computer
Science and Engineering
Sri Krishna College of Technology
Coimbatore, Tamil Nadu, India
E-mail: darlingjemima.d@skct.edu.in

Abstract

We study the oscillatory and almost oscillatory behavior of fourth order delay difference equation of the form, $\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)\right)+a_{n+1} f\left(x_{n-m+1}\right)-a_{n} f\left(x_{n-m+1}\right)=t_{n} \quad$ where, $\left\{p_{n}\right\}>0,\left\{q_{n}\right\}>0,\left\{r_{n}\right\}>0,\left\{a_{n+1}\right\}>0,\left\{a_{n}\right\}>0$ and $\left\{t_{n}\right\}>0$. The necessary and sufficient conditions of oscillation and almost oscillation of the given equation are obtained. We also provide examples for illustrating our results.

1. Introduction

This paper deals with oscillatory and almost oscillatory behavior for

2020 Mathematics Subject Classification: 39A21, 39A05.
Keywords: Oscillatory Behavior, Delay Difference Equations, Riccati transformation.
Received May 27, 2022; Accepted June 1, 2022
solutions of fourth order delay difference equation given by the form,

$$
\begin{equation*}
\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)\right)+a_{n+1} f\left(x_{n-m+1}\right)-a_{n} f\left(x_{n-m+1}\right)=t_{n} \tag{1}
\end{equation*}
$$

where, $\left\{p_{n}\right\},\left\{q_{n}\right\},\left\{r_{n}\right\},\left\{a_{n+1}\right\},\left\{a_{n}\right\},\left\{t_{n}\right\}$ are sequences if real numbers, $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\left\{p_{n}\right\}>0,\left\{a_{n}\right\}>0,\left\{r_{n}\right\}>0,\left\{a_{n+1}\right\}>0,\left\{a_{n}\right\}>0$ and $\left\{t_{n}\right\}>0$ for every $n \geq n_{0} \in N_{0}, \alpha f(\alpha)>0$ for $\alpha \neq 0$, and m is a nonnegative integer. The sequence $\left\{x_{n}\right\}$ is a real sequence for the solution of (1) for every $n \geq n_{0}-m+1$ and satisfies (1) for all $n>n_{0}$. Difference equations occur in the field of dynamical system, mathematical biology, economics, statistics, see for example [1-10].

For every large n a non-trivial solution $\left\{x_{n}\right\}$ of difference equation is oscillatory if the terms are neither eventually positive nor eventually negative and non-oscillatory otherwise. Thus (1) is oscillatory if all solutions are oscillatory and (1) is almost oscillatory if all solutions $\left\{x_{n}\right\}$ are either oscillatory or satisfy the condition $\lim _{n \rightarrow \infty} \Delta^{i} x_{n}=0$ for $i=0,1,2$. In section 3 the necessary and sufficient conditions of oscillation and almost oscillation of (1) are obtained. Examples are provided to prove the results.

2. Methodology

The oscillation and almost oscillation of fourth order delay difference equations are studied by Riccati transformation technique, comparison method and summation averaging method.

3. Oscillation Theorems

Assume $\Delta a_{n} \geq 0$ for every $n \geq n_{0}$ and the following is considered

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{p_{n}}=\sum_{n=n}^{\infty} \frac{1}{q_{n}}=\sum_{n=n_{0}}^{\infty} \frac{1}{r_{n}}=\infty \tag{2}
\end{equation*}
$$

Theorem 1. Let $f(\alpha)=\alpha$ and $t_{n} \equiv 0$, then there exist real valued functions t and T, where $T: N_{0} \times N_{0} \rightarrow R$ such that

$$
\begin{gathered}
T(n, n)=0 \\
T(n, s)>0 \\
\Delta_{2} T(n, s) \leq 0 \\
-\Delta_{2} T(n, s)=t(n, s) \sqrt{T(n, s)}
\end{gathered}
$$

where $\Delta_{2} T(n, S)=T(n, s+1)-T(n, s)$. If for every $n>s \geq n_{0}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{1}{T(n, M)} \sum_{s=M}^{n-1}\left[-\frac{T(n, s)\left(a_{s+1}-a_{s}\right) p_{s} r_{s-m} t^{2}(n, s)}{4\left(s-m-N_{1}\right)\left(s-m-N_{2}\right)}\right] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=n}^{n+m-1}\left(a_{i+1}-a_{i}\right)\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{k=j}^{i} \frac{1}{p_{l}}\right)\right]>1 \tag{4}
\end{equation*}
$$

then all solutions for (1) are oscillatory.
Proof. Assume $\left\{x_{n}\right\}$ to be non-oscillatory solution for (1). With no loss of generality, assume $\left\{x_{n}\right\}$ to be eventually non-negative. Then, there exists an integer $n_{1} \geq n_{0}$ such that $x_{n}>0, x_{n-m}>0$ for every $n \geq n_{1}$. From equation (1), we have

$$
\begin{equation*}
\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)\right)+a_{n} f\left(x_{n-m+1}\right)-a_{n+1} f\left(x_{n-m+1}\right) \tag{5}
\end{equation*}
$$

So that $\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)\right)<0$
Thus, $\left\{q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right\}$ and $\left\{\Delta x_{n}\right\}$ are monotonic and of eventually one sign. Let's claim there exist an integer $n_{2} \geq n_{1}$ such that

$$
\begin{equation*}
\Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)>0 \tag{6}
\end{equation*}
$$

Also lets claim that there exist an integer $n_{3} \geq n_{2}$ such that

$$
\begin{equation*}
\Delta\left(r_{n} \Delta x_{n}\right)>0 \tag{7}
\end{equation*}
$$

In order to prove this we assume the contrary that $\Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right) \leq 0$. So there is another integer $n_{4} \geq n_{3}$ such that $p_{n 4} \Delta\left(q_{n 4} \Delta\left(r_{n 4} \Delta x_{n 4}\right)\right)<0$. Then for
every $n \geq n_{4}$ we get,

$$
\begin{equation*}
p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right) \leq p_{n 4} \Delta\left(q_{n 4} \Delta\left(r_{n 4} \Delta x_{n 4}\right)\right)<0 \tag{8}
\end{equation*}
$$

By taking summation for above inequality from n_{4} to $n-1$ we get,

$$
r_{n} \Delta x_{n}-r_{n 4} \Delta x_{n 4}<p_{n 4} \Delta\left(q_{n 4} \Delta\left(r_{n 4} \Delta x_{n 4}\right)\right) \sum_{s=n_{4}}^{n-1} \frac{1}{q_{s}} \sum_{s=n_{3}}^{n-1} \frac{1}{p_{s}}
$$

Here $r_{n} \Delta x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. Summing again, we get a contradiction to $x_{n}>0$. We now consider two cases:

Case I. Let $\Delta x_{n} \geq 0$ for $n \geq n_{3}$ and define,

$$
z_{n}=\frac{p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)}{y_{n-m+1}}
$$

where $z_{n}>0$ for $n \geq n_{3}$

$$
\begin{equation*}
\Delta z_{n} \leq a_{n}-a_{n+1}-\frac{\Delta x_{n-m+1}}{x_{n-m+1}} z_{n+1} \tag{9}
\end{equation*}
$$

By (5) and (7) and with $\Delta p_{n} \geq 0$ we obtain,

$$
\begin{equation*}
\Delta^{3}\left(r_{n} \Delta x_{n}\right) \leq 0 \tag{10}
\end{equation*}
$$

Here (10) implies $\Delta\left(r_{n} \Delta x_{n}\right)$ is non-increasing. Now consider the equality,

$$
r_{n} \Delta x_{n}=c_{N} \Delta x_{N}+\sum_{s=N_{1}}^{n-1} \Delta\left(q_{s} \Delta\left(r_{s} \Delta x_{s}\right)+\sum_{s=N_{2}}^{n-1} \Delta\left(r_{s} \Delta x_{s}\right)\right.
$$

for $n \geq N_{1} \geq n_{2}$ and $n \geq N_{2} \geq n_{3}$ such that

$$
\begin{equation*}
r_{n} \Delta x_{n} \geq\left(n-N_{1}\right)\left(n-N_{2}\right) \Delta\left(r_{n} \Delta x_{n}\right) \tag{11}
\end{equation*}
$$

From (11) we obtain,

$$
\begin{equation*}
\Delta x_{n-m} \geq \frac{\left(n-m+N_{1}\right)\left(n-m-N_{2}\right) p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)}{p_{n} r_{n-m}} \tag{12}
\end{equation*}
$$

for $n>N_{1}+m+1>N_{2}+m+1=M$. From (9) and (12) we get,

$$
\begin{equation*}
\Delta z_{n} \leq a_{n}-a_{n+1}-\frac{\left(n-m+N_{1}\right)\left(n-m-N_{2}\right) p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)}{x_{n-m} p_{n} r_{n-m}} z_{n+1} \tag{13}
\end{equation*}
$$

With (5) and using the fact $\Delta y_{n} \geq 0$, (13) yields

$$
\Delta z_{n} \leq a_{n}-a_{n+1}-\frac{\left(n-m+N_{1}\right)\left(n-m-N_{2}\right)}{p_{n} r_{n-m}} z_{n+1}^{2}
$$

For every $n \geq M$ we have,

$$
\begin{gathered}
\sum_{n=M}^{n-1} T(n, s)\left(a_{s+1}-a_{s}\right) \leq T(n, M) z_{M} \\
-\sum_{s=M}^{n-1}\left[Z_{s+1}\left(-\Delta_{2} T(n, s)\right)+\frac{\left(s-m-N_{1}\right)\left(s-m-N_{2}\right) T(n, s)}{p_{s} r_{s-m}} z_{s+1}^{2}\right] \\
=T(n, M) z_{M} \\
-\sum_{s=M}^{n-1}+\left[\frac{\sqrt{T(n, s)} t(n, s) z_{s+1}\left(s-m-N_{1}\right)\left(s-m-N_{2}\right) T(n, s)}{p_{s} r_{s-m}} z_{s+1}^{2}\right] \\
\leq T(n, M) z_{M}+\sum_{s=M}^{n-1} \frac{p_{s} r_{s-m} t^{2}(n, s)}{4\left(s-m-N_{1}\right)\left(s-m-N_{2}\right)}
\end{gathered}
$$

With above inequality we get,

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{T(n, M)} \sum_{s=M}^{n-1}\left[T(n, s)\left(a_{s+1}-a_{s}\right)-\frac{p_{s} r_{s-m} t^{2}(n, s)}{4\left(s-m-N_{1}\right)\left(s-m-N_{2}\right)}\right] \leq z_{M}
$$

which is a contradiction to (3).
Case II. Let $\Delta x_{n}<0$ for every $n \geq n_{3}$. Summing (1) from s to n we get,

$$
p_{n+1} \Delta\left(q_{n+1} \Delta\left(r_{n+1} x_{n+1}\right)\right)-p_{s} \Delta\left(q_{s} \Delta\left(r_{s} \Delta x_{s}\right)\right)+\sum_{i=s}^{n} a_{i+1} x_{i-m+1}-\sum_{i=s}^{n} a_{i} x_{i-m+1}=0
$$

So

$$
-\Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)+\frac{1}{p_{n}}\left(\sum_{i=s}^{n} a_{i+1} x_{i-m+1}-\sum_{i=s}^{n} a_{i} x_{i-m+1}\right) \leq 0
$$

Thus we have,

$$
\begin{equation*}
q_{n} \Delta\left(r_{n} \Delta x_{n}\right)+\sum_{i=n}^{\infty}\left(\sum_{j=n}^{i} \frac{1}{p_{j}}\right)\left(a_{i+1} x_{i-m+1}-a_{i} x_{i-m+1}\right) \leq 0 \tag{14}
\end{equation*}
$$

Summing again from s to n and with the fact that $c_{n} \Delta y_{n} \leq 0$ we get,

$$
-\Delta\left(r_{n} \Delta x_{n}\right)+\frac{1}{q_{n}} \sum_{i=n}^{\infty}\left(\sum_{j=n}^{i} \frac{1}{p_{j}}\right)\left(a_{i+1} x_{i-m+1}-a_{i} x_{i-m+1}\right) \leq 0
$$

In a similar way we have,

$$
\begin{equation*}
r_{n} \Delta x_{n}+\sum_{i=n}^{\infty}\left(\sum_{j=n}^{i} \frac{1}{q_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{p_{k}}\right)\left(a_{i+1} x_{i-m+1}-a_{i} x_{i-m+1}\right) \leq 0 \tag{15}
\end{equation*}
$$

A final summation of (15) yield,

$$
\sum_{i=n}^{\infty}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]\left(a_{i+1}-a_{i}\right) x_{i-m+1} \leq x_{n}
$$

Or

$$
\begin{equation*}
\sum_{i=n}^{n+m-1}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]\left(a_{i+1}-a_{i}\right) x_{i-m+1} \leq x_{n} \tag{16}
\end{equation*}
$$

Here $\left\{x_{n}\right\}$ is decreasing. Hence (16) yield

$$
\sum_{i=n}^{n+m-1}\left(a_{i+1}-a_{i}\right)\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right] \leq 1
$$

This gives a contradiction to (4). Thus the proof is completed.
Example 1. Consider the difference equation

$$
\begin{equation*}
\Delta^{4} x_{n}-\frac{16 n+32}{n-m+1} x_{n-m+1}=0 \tag{A1}
\end{equation*}
$$

where m is a odd positive integer, satisfies all conditions of Theorem 1 for $T(n, s)=(n-s)$ and $t(n, s)=\frac{1}{\sqrt{n-s}}$. Hence every solution of (1) becomes oscillatory. Here $\left\{x_{n}\right\}=\left\{(-1)^{n} n\right\}$ is such a solution of (A1).

Theorem 2. We assume $t_{n+1}-t_{n} \equiv 0$. Let $f(\alpha)-f(\beta)=g(\alpha, \beta)(\alpha-\beta)$ and $g(\alpha, \beta) \geq v$ for $v>0$. Then there exist a positive sequence $\left\{\phi_{n}\right\}$ for all $n_{1}>n_{0}+m$ such that,

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty}\left[\left(a_{n+1}-a_{n}\right) \phi_{n}+\frac{p_{n} r_{n-m}\left(\Delta \phi_{n}\right)^{2}}{4 v \phi_{n}\left(n-m-n_{0}\right)}\right]=\infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left(a_{i+1}-a_{i}\right) \sum_{i=n}^{n+m-1}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]=\infty \tag{18}
\end{equation*}
$$

Then all solutions of (1) are oscillatory.
Proof. We proceed exactly as Theorem 1. Here (7) holds and $\left\{\Delta x_{n}\right\}$ is eventually positive then set

$$
z_{n}=\frac{p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right) \phi_{n}}{f\left(x_{n-m}\right)}
$$

For $n \geq n_{3}, z_{n}>0$,

$$
\Delta z_{n} \leq\left(a_{n}-a_{n+1}\right) \rho_{n}+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{\Delta f\left(x_{n-m}\right)}{f\left(x_{n-m}\right)} z_{n+1}
$$

We get

$$
\Delta z_{n} \leq\left(r_{n}-r_{n+1}\right) \phi_{n}+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{g\left(x_{n-m+1}, x_{n-m}\right)}{f\left(x_{n-m}\right)} z_{n+1}
$$

With (12) and considering the facts that $\left\{p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right)\right\}$ is decreasing and $\left\{x_{n}\right\}$ is increasing, we have

$$
\Delta z_{n} \leq \phi_{n}\left(a_{n+1}-a_{n}\right)+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{\mu\left(n-m-N_{1}\right)\left(n-m-N_{2}\right) \phi_{n}}{p_{n} r_{n-m} f\left(x_{n-m}\right)} z_{n+1}^{2}
$$

For $n \geq N_{1}+m+1 \geq N_{2}+m+1>n_{3}$. By squaring we get,

$$
\Delta z_{n} \leq\left(a_{n+1}-a_{n}\right) \phi_{n}+\frac{p_{n} r_{n-m}\left(\Delta \phi_{n}\right)^{2}}{4 v \phi_{n}\left(n-m-N_{1}\right)\left(n-m-N_{2}\right)}
$$

Taking summation for above inequality from M to n and letting $n \rightarrow \infty$ with (17), we get $\lim _{n \rightarrow \infty} z_{n}=-\infty$. This is a contradiction to $\left\{z_{n}\right\}$ which is eventually positive. Now assume $\left\{\Delta x_{n}\right\}$ is eventually negative. Taking summation thrice for (1) exactly as Theorem 1 , we can understand that,

$$
\begin{equation*}
\sum_{i=n}^{\infty}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]\left(a_{i+1}-a_{i}\right) f\left(x_{i-m+1}\right) \leq x_{n} \tag{19}
\end{equation*}
$$

We know that $\left\{x_{n}\right\}$ decreases and $f(\alpha)$ increases, then (19) follows that,

$$
\begin{equation*}
\sum_{i=n}^{n+m-1}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]\left(a_{i+1}-a_{i}\right) \leq \frac{x_{n}}{f\left(x_{n}\right)} \tag{20}
\end{equation*}
$$

It is clear that $\lim _{n \rightarrow \infty} y_{n}=d \geq 0$. From (18) and (20) we see that $d>0$ is not possible. If $d=0$ we have,

$$
\lim \frac{x_{n}}{f\left(x_{n}\right)}=\lim \frac{1}{g\left(x_{n+1}, x_{n}\right)} \leq \frac{1}{v}
$$

This contradicts (18). Thus the proof is completed.
Example 2. Consider the difference equation

$$
\begin{equation*}
\Delta\left(n \Delta\left(n \Delta^{2} x_{n}\right)\right)+8 n^{3}\left(x_{n-4}^{\frac{1}{3}}+x_{n-4}\right)=0, n \geq 1 \tag{A2}
\end{equation*}
$$

that satisfies all the conditions of Theorem 2 for $\phi_{n} \equiv 1$. Hence all solutions of equation (5) are oscillatory for $\left\{x_{n}\right\}=\left\{(-1)^{n} n\right\}$.

Theorem 3. Suppose (17) and (19) holds and if there exist a positive
sequence $\left\{\phi_{n}\right\}$ and an oscillatory sequence $\left\{\psi_{n}\right\}$ such that $\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta \psi_{n}\right)\right)\right)=t_{n}$ for $\lim \Delta^{i} \psi_{n}=0$ for $i=0,1,2$ (22) and for some $\gamma \in(0,1)$ and every $n_{2}>n_{0}+m+1$

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty}\left[\left(r_{n+1}-r_{n}\right) \phi_{n}-\frac{p_{n} r_{n-m}\left(\Delta \phi_{n}\right)^{2}}{4 v \gamma\left(n-m-n_{0}\right) \phi_{n}}\right]=\infty \tag{23}
\end{equation*}
$$

then (1) is said to be almost oscillatory.
Proof. If there exist a non-oscillatory solution $\left\{x_{n}\right\}$ which is positive and $\lim n \rightarrow \infty, y_{n}=0$ then consider a function y_{n} defined as,

$$
\begin{equation*}
y_{n}=x_{n}-\psi_{n} \tag{24}
\end{equation*}
$$

Here y_{n} is eventually positive, if not we will have $y_{n}<\psi_{n}$ which contradicts the nature of oscillation for $\left\{\psi_{n}\right\}$. So (1) implies,

$$
\begin{equation*}
\Delta\left(p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta y_{n}\right)\right)\right) \leq 0 \tag{25}
\end{equation*}
$$

Thus $\left\{\Delta^{2} x_{n}\right\}$ and $\left\{\Delta^{3} x_{n}\right\}$ are eventually of one sign and monotonic. Following as before, there is an integer $n_{3} \geq n_{2}$ such that $\Delta^{2}\left(q_{n} \Delta\left(r_{n} y_{n}\right)\right)>0$ and $\Delta^{3}\left(r_{n} \Delta y_{n}\right) \leq 0$.

We assume $\left\{y_{n}\right\}$ is eventually positive. With our assumption and using the fact that $\left\{y_{n}\right\}$ is increasing and $\psi_{n} \rightarrow 0$ as $n \rightarrow \infty$ we have,

$$
\begin{equation*}
x_{n-m+1} \geq \gamma y_{n-m+1} \tag{26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f\left(x_{n-m+1}\right) \geq f\left(\gamma y_{n-m+1}\right) \tag{27}
\end{equation*}
$$

Now define,

$$
z_{n}=\frac{p_{n} \Delta\left(q_{n} \Delta\left(r_{n} \Delta y_{n}\right)\right)}{f\left(\gamma y_{n-m}\right)} \phi_{n}
$$

$z_{n}>0$ and $n \geq n_{3}$ then,

$$
\begin{gathered}
\Delta z_{n} \leq \phi_{n}\left(a_{n}-a_{n+1}\right)+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{\gamma g\left(\gamma y_{n-m+1}, \gamma y_{n-m}\right) \Delta y_{n-m} \phi_{n}}{f\left(\gamma y_{n-m}\right)} z_{n+1} \\
\Delta z_{n} \leq \phi_{n}\left(a_{n}-a_{n+1}\right)+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{\gamma \gamma \Delta y_{n-m} \phi_{n}}{f\left(\gamma y_{n-m}\right)} z_{n+1}
\end{gathered}
$$

Proceeding as theorem 2 we obtain a contradiction to (23). Hence $\left\{x_{n}\right\}$ becomes eventually negative with $\left\{x_{n}\right\}$ decreasing to a non-negative constant d. Since $\lim _{n \rightarrow \infty} \psi_{n}=0$, we have $\lim _{n \rightarrow \infty} x_{n}=d$. By summing (1) thrice we obtain,

$$
\sum_{i=n}^{\infty}\left[\left(\sum_{j=n}^{i} \frac{1}{r_{j}}\right)\left(\sum_{k=j}^{i} \frac{1}{q_{k}}\right)\left(\sum_{l=k}^{i} \frac{1}{p_{l}}\right)\right]\left(a_{i+1}-a_{i}\right) f\left(x_{i-m+1}\right) \leq y_{n}
$$

As $\lim _{n \rightarrow \infty} \inf x_{n}=0$ we get $\lim _{n \rightarrow \infty} x_{n}=0$. Hence $d=0$ and $\lim \Delta^{i} x_{n}=0$. Thus the proof is completed.

Example 3. Consider the difference equation

$$
\begin{equation*}
\Delta\left(n \Delta\left((n+1) \Delta^{2} x_{n}\right)\right)-\frac{16\left(x_{n-m+1}\right)}{n-m+1}=0 \tag{A3}
\end{equation*}
$$

with m as an odd positive integer which satisfies the conditions of Theorem 3 for $\phi_{n} \equiv 1$. Hence all solutions of (1) are almost oscillatory. Here $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is a solution of (A3).

Theorem 4. Assume (17) holds and there exist a non-negative sequence $\left\{\phi_{n}\right\}$ and an oscillatory sequence $\left\{\psi_{n}\right\}$ such that $\Delta^{3}\left(r_{n} \Delta \psi_{n}\right)=t_{n}$ for $\lim \Delta^{i} \psi_{n}=0$ for $i=0,1,2$, where $\Delta \rho_{n} \leq 0$ and $\Delta^{3} \phi_{n} \geq 0$ for $n>n_{0}$. Suppose

$$
\sum_{n=n_{0}}^{\infty}\left(a_{n+1}-a_{n}\right) \phi_{n}=\infty
$$

and

$$
\sum_{n=n_{0}}^{\infty} \frac{1}{r_{n} \phi_{n}} \sum_{s=N}^{\infty}(s-N+1)\left(a_{s+1}-a_{s}\right) \phi_{n+3}=\infty
$$

are true then all solution for (1) become almost oscillatory.
Proof. Similarly as Theorem 3, we get

$$
\Delta z_{n} \leq \phi_{n}\left(a_{n}-a_{n+1}\right)+\frac{\Delta \phi_{n}}{\phi_{n+1}} \frac{\gamma g\left(\gamma y_{n-m+1}, \gamma y_{n-m}\right) \Delta y_{n-m} \phi_{n}}{f\left(\gamma y_{n-m}\right)} z_{n+1}
$$

For $n \geq N$ and $N \geq n_{0}$. From $\left\{\phi_{n}\right\}$ we obtain,

$$
\Delta z_{n} \leq\left(a_{n}-a_{n+1}\right) \phi_{n}
$$

Taking summation to above inequality from N to n and letting $n \rightarrow \infty$ implies a contradiction to (28). Hence $\left\{\Delta x_{n}\right\}$ should be eventually negative. Thus $\left\{x_{n}\right\}$ decreases to $d \geq 0$. In order to prove $d=0$ assume $d>0$ then there exist an integer $\mathcal{N} \geq N>0$ then $x_{n-m+1} \geq \frac{d}{2}$. Let $\omega_{n}=r_{n} \phi_{n} \Delta y_{n}$, then

$$
\begin{aligned}
\Delta^{3} \omega_{n}=\left(a_{n}\right. & \left.-a_{n+1}\right) \phi_{n+3} f\left(x_{n-m+1}\right)-3 \Delta \phi_{n+2} \Delta\left(q_{n} \Delta\left(r_{n} \Delta x_{n}\right)\right) \\
& +3 \Delta^{2} \phi_{n+1} \Delta\left(r_{n} \Delta x_{n}\right)+\Delta^{3} \phi_{n}\left(r_{n} \Delta x_{n}\right)
\end{aligned}
$$

Here $\Delta \phi_{n}<0$ and $\Delta^{3} \phi_{n}>0$, so

$$
\Delta^{3} \omega_{n}+\left(a_{n+1}-a_{n}\right) \phi_{n+3} f\left(\frac{d}{2}\right) \leq 0
$$

for $n \geq \mathcal{N}$. Now summing this inequality from n to j with $\Delta \omega_{j}>0$ then,

$$
-\Delta \omega_{n}+f\left(\frac{d}{2}\right) \sum_{s=n}^{j}\left(a_{s+1}-a_{s}\right) \phi_{n+3} \leq 0
$$

When $j \rightarrow \infty$ we have,

$$
-\Delta \omega_{n}+f\left(\frac{d}{2}\right) \sum_{s=n}^{\infty}\left(a_{s+1}-a_{s}\right) \phi_{n+3} \leq 0
$$

Again taking summation with the fact $w_{j}<0$ we obtain,

$$
\Delta y_{n} \leq \frac{f\left(\frac{d}{2}\right)}{r_{n} \phi_{n}} \sum_{s=N}^{\infty}(s-n+1)\left(a_{n+1}-a_{n}\right) \phi_{n+3}
$$

Taking a final summation for above inequality from \mathcal{N} to $n-1$,

$$
y_{n} \leq y_{\mathcal{N}} \sum_{s=\mathcal{N}}^{n-1} \frac{1}{r_{s} \phi_{s}} \sum_{h=s}^{\infty}(h-s+1)\left(a_{h+1}-a_{h}\right) \phi_{h+3}
$$

By (29) $\lim _{n \rightarrow \infty} y_{n}=-\infty$ is a contradiction and the proof is complete.
Example 4. Considering the difference equation,

$$
\begin{gather*}
\Delta\left(n \Delta\left(n \Delta^{2} x_{n}\right)\right)+\frac{4 n^{4}+16 n^{3}+18 n^{2}+14 n-1}{n(n+1)(n+2)}\left(x_{n-2}^{1 / 3}+x_{n-2}\right) \\
\quad=\frac{(-1)^{n+1}}{n(n+1)(n+2)}\left(54 n^{4}+53 n^{3}+27 n^{2}+10 n+2\right. \tag{A4}
\end{gather*}
$$

that satisfies all the conditions of Theorem 4 for $\phi_{n} \equiv 1$ and $\left\{\psi_{n}\right\}=\left\{\frac{(-1)^{n}}{n}\right\}$ then all solutions are almost oscillatory. Here $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is an oscillatory solution of (A4).

3. Conclusion

In this paper, the oscillation and almost oscillation conditions for the solutions of (1) are established. These conditions are derived using Riccati transformation technique, comparison method and summation averaging method.

References

[1] P. Agarwal Ravi, Difference Equations and Inequalities, Marcel Decker, New York, (1993).
[2] J. R. Graef and E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcialaj Ekvacioj Serio Internacia 42(3) (1999), 355369.
[3] X. H. Tang and J. S. Yu, Oscillations of delay difference equations, Hokkaido Mathematical Journal 29(1) (2000), 213-228.
[4] S. Saker, J. O. Alzabut and A. Mukheimer, On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Electronic Journal of Qualitative Theory of Differential Equations 2010(67) (2010), 1-16.
[5] G. Ayyappan, Oscillation criteria of third order nonlinear neutral difference equations, Malaya J. Mat. 3(2) (2015), 216-223.
[6] Srinivasan Selvarangam, Mayakrishnan Madhan, Ethiraju Thandapani and Sandra Pinelas, Improved oscillation conditions for third-order neutral type difference equations, Electronic Journal of Differential Equations 2017(90) (2017), 1-13.
[7] Jawahar G. Gomathi, Qualitative analysis on second order neutral delay difference equations, International Journal of Mechanical and Production Engineering Research And Development (Ijmperd) 9 (2019), 659-664.
[8] G. Jayabarathy and J. Daphy Louis Lovenia, Survey results on difference equations, Journal of Critical Reviews ISSN- 2394-5125 7(11), (2020).
[9] A. Murugesan and P. Selvakumar, Oscillation criteria for third order neutral type advanced difference equation, Malaya Journal of Matematik (MJM) 8(3) (2020), 787-790.
[10] S. Sindhuja, J. Daphy Louis Lovenia, A. P. Lavanya, D. Darling Jemima and G. Jayabarathy, Applications of certain third order non-linear neutral difference equations in robotics engineering, Journal of Physics (2021), 1-9.

