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Abstract

We study the oscillatory and almost oscillatory behavior of fourth order delay difference

equation of the form, A(ppA(quA(RAY,))+ ap1f(Xn—m+1) = Gnf(tn—_ms1) = tn  where,
{pn}>0,{g,} >0, {r,}>0,{a,:1} >0, {a,} >0 and {t,}>0. The necessary and sufficient

conditions of oscillation and almost oscillation of the given equation are obtained. We also
provide examples for illustrating our results.

1. Introduction

This paper deals with oscillatory and almost oscillatory behavior for
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solutions of fourth order delay difference equation given by the form,
AP M@ M1, Ax ) + it f (X pi1) = A f(Xp_ppi) =ty 1)

where, {p,}, {a,}, (.} (@) {an)s {t,} are sequences if real numbers,
f:R >R is continuous, {p,}>0,{q,}>0,{r,}>0,{a,.1}>0 {a,}>0
and {t,} > 0 for every n > ng e Ny, af(a) >0 for a # 0, and m is a non-
negative integer. The sequence {x,} is a real sequence for the solution of (1)
for every n > ng —m + 1 and satisfies (1) for all n > ng. Difference equations
occur in the field of dynamical system, mathematical biology, economics,
statistics, see for example [1-10].

For every large n a non-trivial solution {x,} of difference equation is

oscillatory if the terms are neither eventually positive nor eventually
negative and non-oscillatory otherwise. Thus (1) is oscillatory if all solutions

are oscillatory and (1) is almost oscillatory if all solutions {x,} are either

oscillatory or satisfy the condition lim Aixn =0 for i =0, 1, 2. In section 3
n—oo
the necessary and sufficient conditions of oscillation and almost oscillation of

(1) are obtained. Examples are provided to prove the results.
2. Methodology

The oscillation and almost oscillation of fourth order delay difference
equations are studied by Riccati transformation technique, comparison

method and summation averaging method.
3. Oscillation Theorems
Assume Aq,, = 0 for every n > ng and the following is considered

Si-Si-3io.
n=n

n=n n=ng

Theorem 1. Let f(a)=o and ¢, =0, then there exist real valued

functions t and T, where T : Ny x Ny — R such that
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OSCILLATORY BEHAVIOUR OF FOURTH ORDER DELAY ... 193
T(n,n)=0
T(n, s) >0
AsT(n, s) <0
- AgT(n, 5) = tn, VT (n, s)

where AJT(n, S) = T(n, s +1) — T(n, s). If for every n > s > ny,

n-1 2
: 1 T(n’ S) (as+1 — as)psrs—mt (n’ 3)
Jim_ sup 757 Z[‘ 2(5-m-N)s-m-Ny) } @)

S=

n+m-1 i 1 i 1 i 1
LealB2zalEs) o

then all solutions for (1) are oscillatory.

and

Proof. Assume {x,} to be non-oscillatory solution for (1). With no loss of
generality, assume {x,,} to be eventually non-negative. Then, there exists an
integer ny > ng such that x,, > 0, x,,_,, > O for every n > n;. From equation

(1), we have
A(pnA(an(rnAxn ))) + anf (xn—m+1) - an+1f (xn—m+1)
So that A(p,A(g,A(r,Ax,))) < 0 (5)

Thus, {g,A(r,,Ax,)} and {Ax,} are monotonic and of eventually one sign.

Let’s claim there exist an integer ny > n; such that
AgnA(ryAxy)) > 0 6)
Also lets claim that there exist an integer ng > ng such that
A(rAx,) > 0 (7
In order to prove this we assume the contrary that A(g,A(r;,Ax,)) < 0. So

there is another integer ny > ng such that p,4A(q,4A(r,,4A%,,4)) < 0. Then for
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every n = ny we get,
PrN@nA(rAxy ) < PraM@pa(rgAeng)) < O ®
By taking summation for above inequality from n, to n —1 we get,
n-1 1 n-1 1
Xy — TpalXpy < pn4A(Qn4A(Vn4Axn4))sznq—ssznp—s
=ng  s=ng

Here r,Ax,, > —© as n — . Summing again, we get a contradiction to

%, > 0. We now consider two cases:

Case I. Let Ax,, > 0 for n > ng and define,

_ pnA(QnA(rnAxn ))

Yn-m+1

Zn

where z, > 0 for n > ng

Axn—m-%—l z

Az, < ay —apyy — n+l )

Xn-m+1
By (5) and (7) and with Ap,, > 0 we obtain,
A (r,Ax,) < 0 (10)
Here (10) implies A(r,Ax,,) is non-increasing. Now consider the equality,
n-1 n-1
R, = enATy + ) AgATAT) + Y AlnAx)
s=Ny s=Ny
for n > N; = ng and n > Ny > ng such that
rmAx, = (n — Np)(n — Np)A(r,Ax,) (11
From (11) we obtain,

> (n —m+ Nl)(n —m- N2 )pnA(QnA(rnAxn ))

Ay p 2 12
n-m P (12)

forn >Ny +m+1>Nyg+m+1= M. From (9) and (12) we get,
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Az, <a, — a1 — (n—m+ Nl)(n m - NZ)pnA(an(’" Ax )) " (13)

With (5) and using the fact Ay, > 0, (13) yields

_(m-m+ Nj)(n—m - Ny) 52

AZn S0y, =0 DT, n+l1
n‘n—m
For every n > M we have,
n-1
T(n’ 3) (a5+1 - as) < T(n, M)ZM
n=M
n-1
s—m-N;)(s—m—-Ny)I'(n, s
- Z|:Zs+1(_ AT (n, s)) + ( 1)1(0 . 20, 5) 22 }
s=M S's—m
= T(n, M)ZM

~ 1+{w/T(n s)t(n, 8)zg,1(s —m — Ny)(s — m — Ny)T'(n, s) 22 }

T
s=M pSS m

n-1 2
PsTs—mt (n, s)
< T(n’ M)ZM + Z]W4(S - m — Nl)(S —-—m — Nz)
S=

With above inequality we get,

. 1 sl (1, 8)
31_1;20 sup T(I’L, M) Sgwl:T(n’ 3) (as+1 - as) - 4(3 ”f) Nl)(s “m N2):| M

which is a contradiction to (3).

Case II. Let Ax,, < O for every n > n3. Summing (1) from s to n we get,

n n
Pn+1M@n 1A 1%541)) — psA(CIsA(rsAxs)) + z Q1% —m+1 Z X1 =0

i=s i=s

So
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n n

1
- A(QnA(rnAxn)) + p_n Zaiﬂxi—mﬂ - Zaixifmﬂ <0
i=s i=s
Thus we have,
0 1 1
an(rnAxn) + Z Zp_ (ai+1xi—m+1 - aixi—m+l) <0 (14)
~ ~ j
i=n\j=n

Summing again from s to n and with the fact that c,Ay,, < 0 we get,

© 1
1 1
- A(r,Ax,) + r z Zp—] (@ 41%i—m+1 = AXj_ps1) < O

i=n \Jj=n

In a similar way we have,

0 1 i
1 1
rAX, + ; J_znz ;E (ai+1xi—m+1 - aixi—m+1) <0 (15)

A final summation of (15) yield,

i iri : i [ipilJ (ai+1 _ai)xiferl

i=n|\Jj=n J k=j =k

IA
2
S

N

n+m-1 i 1 i 1 i 1
z Zr_ E Zp_l (ai+1_ai)xi7m+1 =Xy (16)

i=n j=n J k=j =k
Here {x,} is decreasing. Hence (16) yield
n+m-1 i i i
1 1 1
- a - = —1l<1

Z (@1~ a) Z T Z qr (Z le

i=n j=n k=j =k
This gives a contradiction to (4). Thus the proof is completed.

Example 1. Consider the difference equation
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16n + 32

4
ANx, ————x,,_
n n_m+1 n—-m+

L =0 (A1)

where m is a odd positive integer, satisfies all conditions of Theorem 1 for
1
Jn-s’

oscillatory. Here {x,} = {(- 1)"n} is such a solution of (A1).

T(n, s) = (n—s) and #(n, s) = Hence every solution of (1) becomes

Theorem 2. We assume t,.q —t, =0. Let f(a)— f(B) = g, B)(a —B)
and g(a, B) > v for v > 0. Then there exist a positive sequence {b,} for all

m > ng + m such that,

S pnrn—m(A¢n)2 -
E [(@ns = an)dy + avh, (n—m - nO)] =™ 17)
n=m

and
n+m-1 i 1 i 1 i 1
lim sup(a;,; — a;) — — — || = (18)
Mo S g; j_zn | an )| & e
Then all solutions of (1) are oscillatory.

Proof. We proceed exactly as Theorem 1. Here (7) holds and {Ax,} is

eventually positive then set

_ pnA(QnA(rnAxn ))(I)n
f(xn-m)

Zn

For n =2 ng, 2, > 0,

A(I)n Af(xn—m)
Azn < (an - an+1)pn + ¢n+1 mzn+1

We get

A¢n g(xn—m+1’ xn—m)z 1
¢n+1 f(xn—m) nr

With (12) and considering the facts that {p,A(g,A(r,,Ax,))} is decreasing

Azn < (rn - rn+1)¢n +

and {x,} is increasing, we have
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A(bn “(n —-m- Nl)(n -m- N2)¢n 22
¢n+1 pnrnfmf(xn—m) n+l

Azn < ¢n(an+1 - an) +
For n > Ny + m+12> Ny +m+1 > ng. By squaring we get,

pnrn—m(A(l)n)z
Az, < (Apaq —ap)dy, + o, (n—m-N)(n-m-Ny)’

Taking summation for above inequality from M to n and letting n — o

with (17), we get lim z, = —o. This is a contradiction to {z,} which is
n—o0

eventually positive. Now assume {Ax,} is eventually negative. Taking

summation thrice for (1) exactly as Theorem 1, we can understand that,
0 i 1 i 1 i 1
Z Z; Zq— [ZF] (@1 = @)f (i pns1) < xp 19)
i=n mn 7 b=y * )z 7
We know that {x,} decreases and f(a) increases, then (19) follows that,
n+m-1 i i i
1 1 1 X,
Z HZ ZJ [Z ﬁ] (Z Eﬂ (@1 —a;) < 7)) (20)
i=n [\j=n k=j 1=k

It is clear that lim y,, = d > 0. From (18) and (20) we see that d > 0 1is

n—

not possible. If d = 0 we have,

Yn iy L
f(xn) g(anrl’ xn)

This contradicts (18). Thus the proof is completed.

lim

<1
A%

Example 2. Consider the difference equation

1
A(nA(nAix,)) + 8n3(x3_ 4+ %, 4)=0,n21 (A2)

that satisfies all the conditions of Theorem 2 for ¢,, = 1. Hence all solutions
of equation (5) are oscillatory for {x,} = {(—1)"n}.

Theorem 3. Suppose (17) and (19) holds and if there exist a positive
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sequence {p,} and an oscillatory sequence {y,} such that

Ap,ANg,Alr,AY,))) = t, for lim Aiz/}n =0 for i =0,1,2 (22) and for some
y €(0,1) and every ng > ny + m +1

N pnrn—m(Ad)n)Z _
Z|:(rn+1 T )¢n - 4Vy(n —m—ny )(I)n = ®© (23)
n=m

then (1) is said to be almost oscillatory.

Proof. If there exist a non-oscillatory solution {x,} which is positive

and limn — o, y, = 0 then consider a function y, defined as,

Yn = Xp — Y (24)

Here y, is eventually positive, if not we will have y, <y, which

contradicts the nature of oscillation for {y,}. So (1) implies,
APrAN@nA(rAY,))) < 0. (25)

Thus {A%x,} and {A’x,} are eventually of one sign and monotonic.
Following as before, there is an integer ng > ny such that A%(g,A(r,y,)) > O
and A3(r,Ay,) < 0.

We assume {y,} is eventually positive. With our assumption and using

the fact that {y,} is increasing and y,, — 0 as n — « we have,

Xp-m+1 2 YVn-m+1 (26)
Thus
Fnmi1) = F¥Yn-ms1) 27
Now define,
2, = Pobl@nAmAY)) o
O n-m)

z, > 0 and n > ng then,
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Ad, Vg(Yynferl > YVn-m )Ayn—md)n

Az, < ¢n(an - an+1) + Opat f(yyn—m)

Zn+l

Ady, YVAY_mbn 201
¢n+1 f(yyn—m) n

Azn < (I)n(an - an+1) +

Proceeding as theorem 2 we obtain a contradiction to (23). Hence {x, }
becomes eventually negative with {x,,} decreasing to a non-negative constant

d. Since lim v, = 0, we have lim x,, = d. By summing (1) thrice we obtain,
n—o0 n—o

i ZL:% ié {ZL:]’%J (@1 = @) (Xi_pmi1) < Dy

i=n | \=n 7 J\k=j I=k

As lim infx, =0 we get lim x,, = 0. Hence d =0 and lim Aixn =0.
n—o n—oo

Thus the proof is completed.

Example 3. Consider the difference equation

AmA((n + 1)%x,) - o) _ g (A3)

with m as an odd positive integer which satisfies the conditions of Theorem 3

for ¢, =1. Hence all solutions of (1) are almost oscillatory. Here
{x,,} = {(-1)"} is a solution of (A3).

Theorem 4. Assume (17) holds and there exist a non-negative sequence

{0,) and an oscillatory sequence {y,} such that AN(r,Ap,)=t, for

lim Aill)n =0 for 1=0,1,2, where Ap, <0 and A3¢n 20 for n>ny.
Suppose

and
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00 o0

Z 1 Z(S—N+1)(as+1—as)¢n+3:oo

¢
n¢n =N

n=n
are true then all solution for (1) become almost oscillatory.
Proof. Similarly as Theorem 3, we get

Ady, Yg(yyn—m+1’ Yyn—m)Ayn—m(I)n
dn+1 f(Yyn—m)

Az, < bpla, —apeg) + n+1

For n > N and N > ng. From {¢,,} we obtain,

AZn < (an - an+1)¢n-

Taking summation to above inequality from N to n and letting n — o

implies a contradiction to (28). Hence {Ax,} should be eventually negative.

Thus {x,} decreases to d > 0. In order to prove d = 0 assume d > 0 then

there exist an integer N > N >0 then x,_,,.1 2. Let o, =1,0,Ay,,

po|

then
Koy = (@ = A1) onsaf (n-mi1) = 3000 2MGpA(AY,,))
+ 3050, 1A A%,) + K0 (7 A,,)
Here A¢,, <0 and A3(|)n > 0, so
Ko + (a1 — an)naf G | < 0

for n > N. Now summing this inequality from n toj with A®; > O then,

- Aoy, + f(%)zjl (A1 = as)0p43 <0

S=n

When j — © we have,

- 0y + /{4 Gt = s <0
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Again taking summation with the fact w; < 0 we obtain,
d
15) ¢

2
(3 -—n+ 1) (an+1 - an)¢n+3
rnd)n N

S=

Ay, <
Taking a final summation for above inequality from N to n — 1,
n-1 1 0
YV, <y —_— h—s+1)(ap1 —ap)d
S D g 2 s D - b

By (29) lim y, = —oo is a contradiction and the proof is complete.
n—o0

Example 4. Considering the difference equation,

4 3 2
9 4n” +16n° +18n" +14n-1, 1/3
AnAnAxy)) + 2+ (n T 2) (3 + %n—2)
(_ 1)n+1
(54n* + 53n° + 2712 + 100 + 2 (A4)

B CERICED)

n
that satisfies all the conditions of Theorem 4 for ¢, =1 and {y,} = {(_;) }

then all solutions are almost oscillatory. Here {x,} = {(— 1)} is an oscillatory

solution of (A4).
3. Conclusion

In this paper, the oscillation and almost oscillation conditions for the
solutions of (1) are established. These conditions are derived using Riccati
transformation technique, comparison method and summation averaging
method.
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