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Abstract 

We study the oscillatory and almost oscillatory behavior of fourth order delay difference 

equation of the form,         nmnnmnnnnnn txfaxfaxrqp   111  where, 

          0,0,0,0,0 1   nnnnn aarqp  and   .0nt  The necessary and sufficient 

conditions of oscillation and almost oscillation of the given equation are obtained. We also 

provide examples for illustrating our results. 

1. Introduction 

This paper deals with oscillatory and almost oscillatory behavior for 
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solutions of fourth order delay difference equation given by the form, 

        nmnnmnnnnnn txfaxfaxrqp   111  (1)  

where,            nnnnnn taarqp ,,,,, 1  are sequences if real numbers, 

 :f  is continuous,           0,0,0,0,0 1   nnnnn aarqp  

and   0nt  for every   0,00  fNnn  for ,0  and m is a non-

negative integer. The sequence  nx  is a real sequence for the solution of (1) 

for every 10  mnn  and satisfies (1) for all .0nn   Difference equations 

occur in the field of dynamical system, mathematical biology, economics, 

statistics, see for example [1-10]. 

For every large n a non-trivial solution  nx  of difference equation is 

oscillatory if the terms are neither eventually positive nor eventually 

negative and non-oscillatory otherwise. Thus (1) is oscillatory if all solutions 

are oscillatory and (1) is almost oscillatory if all solutions  nx  are either 

oscillatory or satisfy the condition 0lim 


n
i

n
x  for .2,1,0i  In section 3 

the necessary and sufficient conditions of oscillation and almost oscillation of 

(1) are obtained. Examples are provided to prove the results.  

2. Methodology 

The oscillation and almost oscillation of fourth order delay difference 

equations are studied by Riccati transformation technique, comparison 

method and summation averaging method.  

3. Oscillation Theorems 

Assume 0 na  for every 0nn   and the following is considered 

  














0 0

111

nn nn nn
nnn rqp

 (2) 

Theorem 1. Let   f  and ,0nt  then there exist real valued 

functions t and T, where RNNT  00:  such that 
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  0, nnT  

  0, snT  

  0,2  snT  

     snTsntsnT ,,,2   

where      .,1,,2 snTsnTSnT   If for every ,0nsn   

 
     
   







 
















1

21

2
1

4

,,

,

1
suplim

n

Ms

mssss

n NmsNms

sntrpaasnT

MnT
 (3) 

and 

  1
111

1

1 























































 



 



mn

ni

i

jk
l

i

jk
k

i

nj
j

ii pqr
aa  (4) 

then all solutions for (1) are oscillatory. 

Proof. Assume  nx  to be non-oscillatory solution for (1). With no loss of 

generality, assume  nx  to be eventually non-negative. Then, there exists an 

integer 01 nn   such that 0,0  mnn xx  for every .1nn   From equation 

(1), we have 

       111   mnnmnnnnnn xfaxfaxrqp  

So that     0 nnnn xrqp  (5) 

Thus,   nnn xrq   and  nx  are monotonic and of eventually one sign. 

Let’s claim there exist an integer 12 nn   such that 

   0 nnn xrq  (6) 

Also lets claim that there exist an integer 23 nn   such that  

  0 nn xr  (7) 

In order to prove this we assume the contrary that    .0 nnn xrq  So 

there is another integer 34 nn   such that    .04444  nnnn xrqp  Then for 
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every 4nn   we get, 

      04444  nnnnnnnn xrqpxrqp  (8) 

By taking summation for above inequality from 4n  to 1n  we get, 

   










1 1

444444

4 3

11
n

ns

n

ns
ss

nnnnnnnn pq
xrqpxrxr  

Here  nn xr  as .n  Summing again, we get a contradiction to 

.0nx  We now consider two cases: 

Case I. Let 0 nx  for 3nn   and define, 

  

1




mn

nnnn
n y

xrqp
z  

where 0nz  for 3nn   

1
1

1
1 







 n

mn

mn
nnn z

x

x
aaz   (9) 

By (5) and (7) and with 0 np  we obtain, 

  03  nn xr  (10) 

Here (10) implies  nn xr   is non-increasing. Now consider the equality, 

     










1 1

1 2

n

Ns

n

Ns

sssssNNnn xrxrqxcxr  

for 21 nNn   and 32 nNn   such that 

     nnnn xrNnNnxr  21  (11) 

From (11) we obtain,  

      

mnn

nnnn
mn rp

xrqpNmnNmn
x





 21   (12) 

for .11 21 MmNmNn   From (9) and (12) we get, 
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      
1

21
1 







 n

mnnmn

nnnn
nnn z

rpx

xrqpNmnNmn
aaz  (13) 

With (5) and using the fact ,0 ny  (13) yields 

    2
1

21
1 





 n

mnn
nnn z

rp

NmnNmn
aaz  

For every Mn   we have, 

     




 

1

1 ,,

n

Mn

Mss zMnTaasnT  

  
     









 




 


1
2

1
21

21
,

,

n

Ms

s
mss

s z
rp

snTNmsNms
snTZ  

  MzMnT ,  

         
















 


1
2

1
211 ,,,

n

Ms

s
mss

s z
rp

snTNmsNmszsntsnT
 

 
 

   









1

21

2

4

,
,

n

Ms

mss
M NmsNms

sntrp
zMnT  

With above inequality we get, 

 
   

 
    M

n

Ms

mss
ss

n
z

NmsNms

sntrp
aasnT

MnT


























1

21

2

1 4

,
,

,

1
suplim  

which is a contradiction to (3). 

Case II. Let 0 nx  for every .3nn   Summing (1) from s to n we get,  

       
 

 

n

si

n

si

miimiissssnnnn xaxaxrqpxrqp 01111111  

So 
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   0
1

111 













  

 



n

si

n

si

miimii
n

nnn xaxa
p

xrq  

Thus we have, 

    
























ni

miimii

i

nj
j

nnn xaxa
p

xrq 0
1

111  (14) 

Summing again from s to n and with the fact that 0 nn yc  we get,  

    
























ni

miimii

i

nj
jn

nn xaxa
pq

xr 0
11

111  

In a similar way we have, 

  






































ni

miimii

i

jk
k

i

nj
j

nn xaxa
pq

xr 0
11

111  (15) 

A final summation of (15) yield,  

  nmiii

ni

i

kl
l

i
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k

i

nj
j

xxaa
pqr
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
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
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
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 

  11
111

 

Or  

  nmiii

mn

ni

i
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l

i
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k

i
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j
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pqr
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
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
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



































 

  11

1
111

 (16) 

Here  nx  is decreasing. Hence (16) yield 

  1
111
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1 
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
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
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
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i
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i
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This gives a contradiction to (4). Thus the proof is completed. 

Example 1. Consider the difference equation 
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0
1

3216
1

4 



 mnn x

mn

n
x  (A1) 

where m is a odd positive integer, satisfies all conditions of Theorem 1 for 

   snsnT ,  and   .
1

,
sn

snt


  Hence every solution of (1) becomes 

oscillatory. Here     nx
n

n 1  is such a solution of (A1). 

Theorem 2. We assume .01  nn tt  Let         ,gff  

and   ,g  for .0  Then there exist a positive sequence  n  for all 

mnn  01  such that, 

 
 

 







 






1
0

2

1 4
nn

n

nmnn
nnn nmn
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aa  (17) 

and  

   


 






























































1

1
111

suplim

mn

ni

i

kl
l

i

jk
k

i

nj
j

ii
n pqr

aa  (18) 

Then all solutions of (1) are oscillatory. 

Proof. We proceed exactly as Theorem 1. Here (7) holds and  nx  is 

eventually positive then set 

  
 mn

nnnnn
n xf

xrqp
z




  

For ,0,3  nznn  

 
 
  1

1
1 













 n

mn

mn

n

n
nnnn z

xf
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aaz  

We get 

 
 

  1
1

1
1

,







 


 n

mn

mnmn

n

n
nnnn z

xf

xxg
rrz  

With (12) and considering the facts that    nnnn xrqp   is decreasing 

and  nx  is increasing, we have 
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 
   

 
2

1
21

1
1 









 n

mnmnn

n

n

n
nnnn z

xfrp

NmnNmn
aaz  

For .11 321 nmNmNn   By squaring we get, 

 
 

   
.

4 21

2

1 NmnNmn

rp
aaz

n

nmnn
nnnn 


 

  

Taking summation for above inequality from M to n and letting n  

with (17), we get .lim 


n
n

z  This is a contradiction to  nz  which is 

eventually positive. Now assume  nx  is eventually negative. Taking 

summation thrice for (1) exactly as Theorem 1, we can understand that, 

    nmiii

ni

i

kl
l

i
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i

nj
j

xxfaa
pqr
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











































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  11
111

 (19) 

We know that  nx  decreases and  f  increases, then (19) follows that, 

 
 n

n
ii

mn

ni

i

kl
l

i

jk
k

i

nj
j xf

x
aa

pqr






























































 

  1

1
111

 (20) 

It is clear that .0lim 


dyn
n

 From (18) and (20) we see that 0d  is 

not possible. If 0d  we have, 

    




1

,

1
limlim

1 nnn

n

xxgxf

x
 

This contradicts (18). Thus the proof is completed. 

Example 2. Consider the difference equation 

     1,08 4
3

1

4
32   nxxnxnn nnn  (A2) 

that satisfies all the conditions of Theorem 2 for .1n  Hence all solutions 

of equation (5) are oscillatory for     .1 nx
n

n   

Theorem 3. Suppose (17) and (19) holds and if there exist a positive 
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sequence  n  and an oscillatory sequence  n  such that 

    nnnnn trqp    for 0lim  n
i
  for 2,1,0i  (22) and for some 

 1,0  and every 102  mnn  

 
 

 





 


















1
0

2

1 4
nn

n

nmnn
nnn nmn

rp
rr  (23) 

then (1) is said to be almost oscillatory. 

Proof. If there exist a non-oscillatory solution  nx  which is positive       

and 0,lim  nyn  then consider a function ny  defined as, 

nnn xy   (24) 

Here ny  is eventually positive, if not we will have nny   which 

contradicts the nature of oscillation for  .n  So (1) implies, 

    .0 nnnn yrqp  (25) 

Thus  nx2  and  nx3  are eventually of one sign and monotonic.  

Following as before, there is an integer 23 nn   such that    02  nnn yrq  

and   .03  nn yr  

We assume  ny  is eventually positive. With our assumption and using 

the fact that  ny  is increasing and 0n  as n  we have, 

11   mnmn yx  (26) 

Thus  

   11   mnmn yfxf  (27) 

Now define, 

  
  n

mn

nnnn
n yf

yrqp
z 







 

0nz  and 3nn   then, 
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 
 

  1
1

1
1

,







 






 n

mn

nmnmnmn

n

n
nnnn z

yf

yyyg
aaz  

 
  1

1
1 






 






 n

mn

nmn

n

n
nnnn z

yf

y
aaz  

Proceeding as theorem 2 we obtain a contradiction to (23). Hence  nx  

becomes eventually negative with  nx  decreasing to a non-negative constant 

d. Since ,0lim 


n
n

  we have .lim dxn
n




 By summing (1) thrice we obtain,  

    nmiii

ni

i

kl
l

i

jk
k

i

nj
j

yxfaa
pqr






























































 

  11
111

 

As 0inflim 


n
n

x  we get .0lim 


n
n

x  Hence 0d  and .0lim  n
ix  

Thus the proof is completed. 

Example 3. Consider the difference equation 

   
 

0
1

16
1 12 


 

mn

x
xnn mn

n  (A3) 

with m as an odd positive integer which satisfies the conditions of Theorem 3 

for .1n  Hence all solutions of (1) are almost oscillatory. Here 

    n
nx 1  is a solution of (A3). 

Theorem 4. Assume (17) holds and there exist a non-negative sequence 

 n  and an oscillatory sequence  n  such that   nnn tr  
3  for  

0lim  n
i
  for ,2,1,0i  where 0 n  and 03  n  for .0nn   

Suppose  

 




 

0

1

nn

nnn aa  

and 
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    








 


0

311
1

nn Ns

nss
nn

aaNs
r

 

are true then all solution for (1) become almost oscillatory. 

Proof. Similarly as Theorem 3, we get  

 
 

  1
1

1
1

,







 






 n

mn

nmnmnmn

n

n
nnnn z

yf

yyyg
aaz  

For Nn   and .0nN   From  n  we obtain,  

  .1 nnnn aaz    

Taking summation to above inequality from N to n and letting n  

implies a contradiction to (28). Hence  nx  should be eventually negative. 

Thus  nx  decreases to .0d  In order to prove 0d  assume 0d  then 

there exist an integer 0 NN  then .
21
d

x mn   Let ,nnnn yr   

then 

      nnnnmnnnnn xrqxfaa   2131
3 3  

   nnnnnn xrxr  
3

1
23  

Here 0 n  and ,03  n  so 

  0
231

3 






 
d

faa nnnn  

for .Nn  Now summing this inequality from n to j with 0 j  then,  

 


 








j

ns

nssn aa
d

f 0
2 31  

When j  we have, 

 




 








ns

nssn aa
d

f 0
2 31  
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Again taking summation with the fact 0jw  we obtain, 

   




 













Ns

nnn
nn

n aans
r

d
f

y 311
2

 

Taking a final summation for above inequality from N to ,1n  

    








 




1

311
1

n

s sh

hhh
ss

n aash
r

yy

N

N  

By (29) 


n
n

ylim  is a contradiction and the proof is complete. 

Example 4. Considering the difference equation, 

  
   

 2
31
2

234
2

21

11418164
 




 nnn xx

nnn

nnnn
xnn  

 
   

 210275354
21

1 234
1









nnnn
nnn

n

 (A4) 

that satisfies all the conditions of Theorem 4 for 1n  and  
 







 


n

n

n
1

  

then all solutions are almost oscillatory. Here     n
nx 1  is an oscillatory 

solution of (A4). 

3. Conclusion 

In this paper, the oscillation and almost oscillation conditions for the 

solutions of (1) are established. These conditions are derived using Riccati 

transformation technique, comparison method and summation averaging 

method. 
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