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Abstract

The Ternary Quadratic Diophantine Equation 32 +2y2 = 27522 is analyzed for its

infinite number of non-zero integral solutions.
Introduction

Diophantine equations have stimulated the interest of various
mathematicians. Diophantine equations with higher degree greater than
three can be reduced into equations of degree 2 or 3 and it can be easily
solved. In [1-3], theory of numbers is discussed. In [4-5], quadratic
Diophantine equations are discussed. In [6-11], cubic, biquadratic and higher

order equations are considered for its integral solutions.

This communication concerns with yet another interesting ternary

quadratic equation 3x? + 2y2 = 27522 representing a cone for determining

its infinitely many non-zero integral points. Also, a few interesting relations

among the solutions are presented.
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Notations

Ts, , = n(2n —1) = Hexagonal number of rank n

Ts, , = n(3n —2) = Octagonal number of rank n

TlO, n
Tl2, n
Tl4, n
Tl6, n
TIS, n
To0, n
Ty, 1,
T24, n
To, n
Tos, n

T30 n

’

n(4n — 3) = Decagonal number of rank n

n(5n — 4) = Dodecagonal number of rank n
n(6n — 5) = Tetradecagonal number of rank n
n(7n — 6) = Hexadecagonal number of rank n
n(8n — 7) = Octadecagonal number of rank n
n(9n — 8) = Icosagonal number of rank n
n(10n — 9) = Icosidigonal number of rank n

n(11n —10) = Icositetragonal number of rank n

= n(12n —11) = Icosihexagonal number of rank n

n(13n —12) = Icosioctagonal number of rank n

n(14n —13) = Triacontagonal number of rank n

Cs, =n? +(n- 1)? = Centered Square number of rank n

GnO,, = (2n —1) = Gnomonic number of rank n

Method of Analysis

The ternary quadratic Diophantine equation to be solved for its non-zero

integral solutions is

3x2 +2y% = 27522, (1)

The substitution of linear transformations

x=X+2T and y = X - 3T 2

In (1) leads to,
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X2 4+ 6T?% = 5572, 3)
Pattern 1.

Assume,
z = z(a, b) = a® + 6b> 4)
where a and b are non-zero integers
55 = (1 + 3iv6) (1 — 3iV6). (5)
Using (4) and (5) in (3), and using factorization method,
(X +iV6T)(X - iv6T) = (1 + 3iv6) (1 — 3iv6) (a + iV6T)(a — iV6b)>.  (6)

Equating the like terms of the equation and comparing the real and

imaginary parts, we get
X = a® - 36ab - 6b7,
T = 3a® + 2ab —18b%.

Substituting the values of X and T in equation (2) the corresponding

integer solutions are,

x = x(a, b) = Ta® — 32ab — 182,
y = y(a, b) = —8a® — 42ab + 48b2,

z = z(a, b) = a® + 6b°.

Observations

1. 2x(a, a) - 65y(a, a)+ Tz(a, a) = 49a® Perfect square.
2. x(a, a) - y(a, a) - 9Ty, 4 = O(mod 6)

3. 2x(a, a) — 65y(a, a) + 42z(a, a) = 49a> Nasty number.
4. 2x(a, a) + 65y(a, a) + z(a, a) - Tig, , = O(mod 6)

5. y(a, a) - x(a, a) - 21Ty, = O(mod 2)
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6. y(a, a) - x(a, a) - Tg o, —10T1, , — 26Gno, = O(mod 26)

7. y(a, a) - x(a, a) - 9Ty, 4 = O(mod 6)

8. y(a, a) - 62(a, a) — 8Ty, , —16Gno, = O0(mod 16)

9. 2(a, a) - x(a, a) - 9T1g , = O(mod 63)

10. 42(a, a) - y(a, a) - 15T ,, = O(mod 15).

Pattern 2.

Equation (3) can be written as,

55 = (7 +ivV6) (7 — iV6). (7)

Using (4) and (7) in (3), and using factorization method

(X +iV6T) (X — iv6T) = (7 +iV6) (7 — iv6) (a + iVebY(a — iv6b)?.  (8)
Equating the like terms and comparing the real and imaginary parts, we get

X = 7a® —12ab — 42b%,
T = a® +14ab - 6b7.

Substituting the values of X and T in equation (2) the corresponding
integer solutions are,

x = x(a, @) = 9a% + 16ab — 26b2,
y = y(a, a) = 10a® + 30ab — 32b2,
z = z(a, a) = a® + 6b>.

Observations

1. 8x(a, a) + y(a, a) + 7z(a, a) Perfect square.

2. 8x(a, a) + y(a, a) + 7z(a, a) is a nasty number.

3. y(a, a) - x(a, a) - 3Tg 4 = O(mod 6).
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4. ¥(a, a) - x(a, @) - Tz, ¢ — To, ¢ = O(mod 7).
5. y(a, a) - x(a, a) — Ty o = O(mod 8).
6. y(a, a) - x(a, a) - Ty o — T4, o = O(mod 7).
7. 8y(a, a) + 62(a, a) - 53Ty , = O(mod 53).

8. 9y(a, a) - 6x(a, a) — 22Ty , — 22Gno, = O(mod 22).

e}

. 4y(a, a) + 42(a, a) - 20Ty , — 20Gno, = O(mod 20).
10. 5x(a, a) + 5y(a, a) + 5z(a, a) —10Tg , — 30Gno, = O(mod 30).

Pattern 3.

55 can be written as,

- (37+i«/€5))§37—i«/€)' ©
Using (4) and (9) in (3),
(X + 6T (X — iV6T) = é(37 +iV6)(37 - iV6) (a + iEbY2(a — iVEb):. (10)

Equating the like terms and comparing the real and imaginary parts, we
get

U - %(37(12 —12ab - 222),

V= %(a2 — T4ab — 6b%).

Since our interest is on finding integer solutions, we choose a and b
suitably. So that X and T are integers. Let us take a = 54, b = 5B then the

values of
X = X(A, B) =185A% — 60AB —1110B2,
T = T(A, B) = 5A% + 370AB — 30B2.

In view of (2), the integer solutions of (1) are given by,
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x = x(A, B) = 1854% — 60AB —1110B2,
y = y(A, B) = 5A% + 370AB — 30B2,

z = z(A, B) = 25A% +150B2.

Observations

1.

2.

9.

69x(A, A)+197y(A, A)+ 7z(A, A) is a perfect square.

69x(A, A)+197y(A, A)+ 2(A, A) - Tig, 4 = O(mod 150)

. WA, A) - x(A, A)-665T; , = 0(mod 665)

. YA, A)—x(A, A)-133Tyy , = 0(mod 1197)

. 69x(4, A)+197y(A, A)+22(A, A) - 30Ty o — 25Ty 4 = O(mod 295)
- ¥(A, A)-2(A, A)-104T}5 , — 208Gno, = O(mod 208)

- (A, A) - x(A, A)+22(A, A)-100Tyy , — 85T o = O(mod 85)

. YA, A)—x(A, A)+42(A, A)-10Ty, , — 25Gno, = O(mod 25)

¥(A, A) - x(A, A)-100T}, , —125Ty, o —11075 4 = O(mod 995)

10. (A, A)—x(A, A)+22(A, A)—140Tyg , — 770Gno, = 0(mod 770)

Pattern 4.

55 can be written as,

55— (47+i«/§)7(47—i«/6)‘ (1)

Using (4) and (11) in (3),

(X + V6T (X — iV6T) = %(47 +iV6)(47 — iV6) (a + iVBb)X(a — iVEbY?. (12)

Equating the like terms and comparing the real and imaginary parts, we

get
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U - %(47(12 —108ab - 28%2),

V= %(9a2 +94ab + 54b2).

Since our interest is on finding integer solutions, we choose a and b
suitably. So that X and T are integers. Let us take a = 7A and b = 7B

X = X(A, B) = 32942 — 756AB — 1974B2,
T = T(A, B) = 63A4% + 658AB — 378B2.
In view of (2), the integer solutions of (1) are given by,
x = x(A, B) = 32942 — 756AB - 1974B%,
y = ¥(A, B) = 63A% + 658A4B — 378B2,
z = z(A, B) = 49A% + 294B2.
Observations
1. z(A, A) is a cubic integer, y(A, A) is a cubic integer.
2. %(4, A) - x(4, A)—196Ty; , = O(mod 2548)
3. y(A, A)—x(A, A)—1372Cs, —1372Gno, = 0(mod 1372)
4. y(A, A) - x(A, A)- 68611, , = 0(mod 2058)
5. (A, A) - x(A, A)-540Ty5 o, — 22Cs, — 22Gno, = 0(mod 4)
6. ¥(A, A)+2(A, A)-98T15 , = 0mod (558)
7. 29(A, A)+ 2(A, A) - x(A, A)—245T}y, , = 0mod (13)
8. ¥(A, A)+2(A, A) - 98115 o — 294Gno, = 0 mod (294)
9.10z(A, A)+ y(A, A)—x(A, A)—441Ty, , = Omod (5733)

10. y(A, A)+32(A, A) - 3431y , = 0(mod 1029).
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Conclusion

To conclude, one may search for other patterns of solutions and their

corresponding properties.
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