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Abstract 

The effect of heat transfer in unsteady Sisko fluid flow with viscous dissipation is studied 

using similarity technique. The main purpose of the similarity technique is to convert PDE into 

ODE. The converted ordinary equations are solved using MATLAB BVP4C solver by 

transforming into the system of a first-order ordinary differential equation. The viscous 

dissipation effects on heat transfer are measured by the Eckert number. The temperature 

enhances as an increase in Eckert number. Velocity and temperature profiles for Newtonian 

and non-Newtonian Sisko fluid are compared. The velocity is higher in the case of Sisko fluid 

than in the Newtonian fluid case and a reverse effect is observed in temperature. The velocity 

and temperature both are higher in case of and power-law index n zero (shear thinning) than 

3,2,1n  (shear thickening). The material parameter of Sisko fluid plays an important role on 

velocity and temperature profile. Impact of Prandtl number on temperature also observed in the 

study. 

https://scet.ac.in/
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1. Introduction 

There are different non-Newtonian fluids models with various 

characteristics in literature, and Sisko fluid model is one of them. This model 

has plenty of applications in the industry because of its shear thinning and 

shear thickening properties. Sisko fluid model is appropriate for the flow of 

greases, some polymeric suspensions, drilling fluids and cement slurries 

without yield stress, etc.  

In fluid mechanics, viscous dissipation is defined as the reduction of 

fluctuating velocity gradients due to viscous stresses. The kinetic energy 

converts into the internal energy of the fluid in the process of viscous 

dissipation. In the regions with large gradients, dissipation is high because of 

the viscosity of the fluid, which heats up the fluid. This dissipation process 

has applications in polymer processing flows, aerodynamic heating in the thin 

boundary layer around high-speed aircraft, etc. 

There are different analytical and numerical methods available in the 

literature to solve governing nonlinear equations of non-Newtonian fluid flow 

models. The traveling wave and similarity solutions of nonlinear equations 

are desirable, as such solutions play a very important role in the study of 

nonlinear wave and fluid flow phenomena. The main advantage of the 

similarity method is to convert nonlinear partial differential equations into 

ordinary differential equations. 

The combined influences of an applied magnetic field and viscous 

dissipation had numerically studied using the Shooting method, for boundary 

layer flow of Sisko fluid, over the stretching cylinder by Malik et al. [1]. Arif 

Hussain et al. [2] investigated the Sisko fluid flow characteristics over-

stretching cylinder and heat transfer with viscous dissipation. Scaling group 

of transformations for is used to convert governing partial differential 

equations into a corresponding set of ordinary differential equations by 

applying the scaling group of transformations and further numerical 

technique Runge-Kutta-Fehlberg method is applied to analyze flow 

behaviour. They observed the opposite trends for impact of viscous 

dissipation through Eckert number Ec on fluid temperature and local Nusselt 

number. A. Megahed [3] had analyzed the non-Newtonian Sisko fluid flow 

due to a nonlinearly stretching sheet with viscous dissipation and heat 

generation effect by applying the numerical shooting technique.  
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Unsteady boundary layer flow of a Sisko fluid model over an 

axisymmetric stretching porous disk in the presence of a uniform magnetic 

field in cylindrical polar coordinates system is investigated numerically by 

applying the Shooting method with Runge-Kutta of order 5 by T. Mahmood et 

al. [4]. M. Khan et al. [5] analyzed the unsteady flow of a Sisko fluid in a 

cylindrical tube due to the translation of the tube wall parallel to the axis of 

the tube. They derived a similarity solution using Lie point symmetries of the 

partial differential equation and converted into the ordinary differential 

equation and determined the initial condition from a similarity solution of the 

partial differential equation. 

The boundary layer flow of non-Newtonian Casson fluid has been 

numerically analysed by Ajayi et al. [6] over a horizontal melting surface 

embedded in a thermally stratified medium under the effect of viscous 

dissipation and internal space heat source. Substantial increase in 

temperature distribution is certain with an increase in the magnitude of 

Eckert number is noticed for the motion of two-dimensional Casson fluid 

flows with temperature dependent plastic dynamic viscosity together with 

thermal and solutal stratification in the presence of Lorentz force. Boubaker 

et al. [7] investigated the heat transfer in the presence of viscous dissipation 

of pseudo plastic power-law fluids aligned with a semi-infinite plate. They 

found numerical solutions using the discretization shooting method and the 

Boubaker polynomials expansion scheme (BPES). Abou-zeid [8] had studied 

the effects of viscous dissipation on the non-linear peristaltic mechanism with 

heat transfer of an incompressible micropolar non-Newtonian nanofluid in an 

asymmetric channel. The closed solutions of fluid velocity and Micro rotation 

velocity are obtained, and the solutions for temperature and nanoparticle 

profiles are obtained by using the homotopy perturbation method (HPM).  

Viscous dissipation effects had taken into account by S. Agunbiade and 

M. Dada [9] on an unsteady convective rotatory Rivlin-Ericksen flow of an 

incompressible electrically conducting fluid under time-dependence suction. 

The governing equations were non-dimensionalized and reduced to ordinary 

differential equations using the perturbation technique. The resulting 

ordinary differential equations were solved using the Adomian decomposition 

method. M. Shojaeian et al. [10] had analyzed the flow of power-law fluids in 

circular channels with iso flux thermal wall boundary conditions, under the 

effect of viscous dissipation in convective heat transfer mode. 
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N. Shukla et al. [11] had analyzed unsteady MHD boundary layer 

stagnation point the flow of second-grade nanofluid from a horizontal 

stretching sheet with second-order slip velocity, entropy generation, and 

thermal slip effects by applying HAM. The effects of heat generation and 

viscous dissipation were analyzed numerically by T. Murugesan and Dinesh 

Kumar [12] on the MHD flow of radiative nanofluid over an exponentially 

stretching sheet in a porous medium by using an efficient Nachtsheim-

Swigert shooting iteration scheme to satisfy asymptotic boundary conditions 

along with the fourth-order Runge-Kutta integration process.  

Kotha Gangadhar et al. [13] had numerically studied free convection flow 

of Casson fluid over a non-linear stretching sheet under the effect of viscous 

dissipation using the Spectral Relaxation method. B. C. Parida et al. [14] had 

studied the effects of viscous dissipation on the unsteady MHD flow of an 

incompressible viscous fluid over a vertical permeable surface embedded in a 

porous medium. The Perturbation method has been applied to solve the 

coupled and nonlinear governing equations. 

I. L. Animasaun [15] carried out study of Casson fluid flow along a 

vertical porous plate in the presence of viscous dissipation, nth order 

chemical reaction and suction. The effects of thermophoresis, Dufour, 

temperature dependent thermal conductivity and viscosity of an 

incompressible electrically conducting Casson fluid flow have been studied by 

utilising shooting method along with Runge-Kutta Gill and Quadratic 

interpolation (Muller’s scheme). They found the velocity of dissipative Casson 

fluid flow increase with an increase in the value of temperature dependent 

fluid viscosity parameter.  

Effects of partial slip and viscous dissipation on the dynamics of blood-

gold Carreau nanofluid and dusty fluid have been investigated numerically 

using the classical Runge-Kutta integration scheme together with shooting 

techniques and Matlab bvp5c package by Olubode et al. [16]. They observed 

the effects of partial slip are highly significant when viscous dissipation is 

considerably large due to the existence of a significant difference between the 

impact of partial slip on the dynamics of blood-gold nanofluid and dusty fluid 

in the transportation of blood and GNPs mixture.  

M. Patel et al. [17] studied the laminar sisko fluid flow by applying one 
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parameter scaling Group similarity transformations and observed that the 

velocity profile increases more rapidly for Sisko fluid than it is in Power-law 

fluid. H. Parmar and M. G. Timol [18] derived proper similarity 

transformation for the unsteady flow of Sisko fluids past the semi-infinite flat 

plate and converted nonlinear partial differential equations into ordinary 

differential equations, using the same. R. M. Darji and M. G. Timol [19] had 

derived similarity variables, using the deductive group-theoretic method, for 

the unsteady free-convection flow of non-Newtonian Power-law fluids, over a 

continuous moving vertical plate systematically. The similarity variables had 

derived for the laminar unsteady boundary layer flow with heat conductive 

mass transfer by J. Surawala and M. G. Timol [20]. The Similarity variables 

are derived and applied to convert partial differential equations into ordinary 

differential equations for different steady Newtonian and non-Newtonian 

fluid flow problems by H. Shukla et al. [21, 22, 23, 24].  

The above literature review shows that there are many papers on the 

steady and unsteady flow of Newtonian and non-Newtonian fluid problems 

under the viscous dissipation effects by directly applying the similarity 

variable or non-dimensional variable to convert partial differential equations 

into ordinary differential equations. Also, some research work was done by 

deriving similarity variables on steady flow problems and little work on 

unsteady flow problems.  

M. Kabir and E. Aghdam [25] had analyzed the effect of heat transfer on 

the unsteady flow of a Sisko fluid model using traveling wave solutions of 

constant wave speed. They analysed impacts of material parameter, power-

law index, and travelling wave speed in the study. 

In the present investigation, we have considered viscous dissipation 

effects on the non-Newtonian Sisko fluid model for unsteady flow over a flat 

plate. Heat transfer analysis done by analysing impact of Ecrket number. 

Impact of various physical parameters like Prandtl number, power-law index, 

and material parameter on the flow are investigated in this paper. The 

investigation was done by deriving similarity independent and dependent 

variables for the purpose to reduce governing partial differential equations 

into ordinary differential equations. This type of analysis not done for this 

type of problem yet, to the author’s knowledge. 
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2. Mathematical Formulation of Fluid Flow [25] 

Here, unsteady, incompressible Sisko fluid flow, over a flat rigid plate 

situated at ,0y  is considered for heat transfer analysis. The Sisko fluid is 

in the space .0y  The plate is in motion with time-dependent velocity 

 .10 tVU  The Sisko fluid flow is generated because of the motion of the plate. 

The pressure gradient and external forces are neglected. The temperature of 

the plate is  tV20  which is supposed to be greater than the ambient 

temperature. The governing equations for velocity and temperature fields for 

Sisko fluid can be written as follows: 
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With conditions on boundary are given by  
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in which 0U  and 0  are the characteristic velocity and temperature, 

respectively, and  yg1  and  yg2  are the initial velocity and temperature, 

respectively.   is the ambient temperature. ba,  and  0n  are the sisko 

fluid material parameters defined differently for different fluids.  the 

density of the fluid, pc  the specific heat, k the constant thermal conductivity.  
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In the present problem we have .0




y

u
 

Equations (1) to (5) are converted in non-dimensional form as follows:  
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Values at boundary are given by:  

        0,,0,,0 21  ttVttVtu  (8) 
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        0,0,,0, 21  yyhyyhyu  (10) 
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3. Method of Similarity Solution 

The method used in this paper is the application of the one-parameter 

group transformations. By utilizing these transformations the two 

independent variables of governing equations will be reduced by one and the 

boundary value type partial differential equations which have two 

independent variables t and y transform into boundary value type ordinary 

differential equations in the only one independent variable, which are 

similarity equations. 

We start our solution by defining the one-parameter group 
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where, ‘a’ is the parameter of the transformation. SA  and SB  are real 

valued and at least differentiable in their real argument ‘a’. 
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3.1. Invariance of differential equation under one-parameter 

group of transformations.  
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 2yt AA   and  2uAA   (17)  

Applying the invariance principle on auxiliary conditions we get,  

0  tyu BBBB  (18) 

Here, we derived the group G with one-parameter which transforms, the 

differential equations (6), (7), and the boundary conditions in equations (8) to 

(10) invariantly. 

The group G is in the form, 
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3.2 Derivation of Complete set of absolute invariant:  

To convert the boundary value problem in the form of similarity 

equations in a single independent variable we will find the complete set of 

absolute invariants.  

If  ty,  is the absolute invariants of the independent variables, 

then  
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which are the two absolute invariants corresponding to u and . The 

application of a basic theorem in group theory; states that: A function 

 ,;, utygi  is an absolute invariant of a one-parameter group if it satisfies 

the following first-order linear differential equation: (see Moran and Gaggioli 

[27])  
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where, 0a  denotes the value of which yield the identity element of the group.  

3.2.1 Deduction of similarity independent variable 

 yx,  is an absolute invariant if it satisfies the first-order linear partial 

differential equation: 
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the solution of (23) is given by,  
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3.2.2 Deduction of similarity dependent variables ,u   

By applying, the same concept which we applied for derivation of 

similarity independent variable, we get  
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3.3 The reduction to similarity equations.  

Applying derived transformations in equations (24), (27), (30), equations 

(6)-(7) are converted into the following form. 
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          2
1

2

1

1
1

2
nftfbEcg

pr
gmg

nm







































  (32) 

With boundary conditions 

    1,10  gf  
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    0,0  gf  

Here we observed equations (31) and (32) which have two independent 

variables  and t. So, we required coefficients either constants or functions of 

 only.  

So, for the same purpose, we choose .1m  So, the above equations are 

reduced into the following ODEs. 

          



 ffnbfff n 1

22

1
  (33) 

            211
1

2





 fnfbEcg
pr

gg n   (34) 

With boundary conditions 

    1,10  gf   

    0,0  gf  

4. Numerical Solution 

It is a very difficult task to solve these differential equations analytically. 

So, here, we used BVP4C MATLAB coding to obtain a numerical solution to 

the problem. To apply MATLAB Bvp4c coding we have to reduce the above 

system of equations in a system of first-order differential equations as 

follows:  

Substitute ,iy  for 4,3,2,1i  for functions  

ggff  ,,,  and x   

21 yy    (35) 

   1
2

21
2

12 





nynb

xyy
y   (36) 

43 yy    (37) 

      1
2

2
2434 1

2


 nybyEcy
x

ypry   (38) 
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with boundary conditions  

1,10 31  yyx  

1,1 31  yyx   (39) 

5. Results and Discussion 

Equations (35) to (39) are solved by BVP4C coding.  

We had taken .6  Flow Velocity and temperature values are 

obtained for fixed parameter values 8.0,1,2.0  Ecprb  and for 

different flow index value .3,2,1n   

Table 1. Comparison of velocity and temperature for different 

.8.0,1,2.0  Ecprb  

 Velocity 

 1n  

Velocity 

 2n  

Velocity 

 3n  

Temperature 

 1n  

Temperature 

 2n  

Temperature 

 3n  

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.5 0.5887 0.5891 0.5930 0.6360 0.6280 0.6232 

1 0.3150 0.3232 0.3313 0.3700 0.3482 0.3444 

1.5 0.1520 0.1645 0.1721 0.1927 0.1724 0.1706 

2 0.0656 0.0772 0.0821 0.0791 0.0766 0.0760 

2.5 0.0252 0.0332 0.0357 0.0316 0.0307 0.0305 

3 0.0086 0.0130 0.0141 0.0114 0.0111 0.0110 

Table 2. Velocity and temperature for .8.0,1,2.0,0  Ecprbn  

 Velocity  0n  Temp  0n  

0 1.0000 1.0000 

0.5 0.6187 0.6404 

1 0.3538 0.3700 

1.5 0.1858 0.1927 

2 0.0891 0.0906 



A SIMILARITY APPROACH OF HEAT TRANSFER: THE … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 8, June 2022 

4823 

2.5 0.0388 0.0385 

3 0.0153 0.0148 

We observed from Table 1 that velocity is higher in the case of 2n  and 

3n  for non-Newtonian fluid than in the case of 1n  for the Newtonian 

fluid. We observed that temperature are higher in the case of 1n  for 

Newtonian fluid than in the case of 2n  and 3n  for non-Newtonian 

fluid. From Table 1 and Table 2, we observed that velocity and temperature 

for 0n  is higher than 2,1n  and 3. 6. Graphical presentation: 

 

Figure 1. Effect of pr on temperature for Newtonian fluid flow. 

 

Figure 2. Effect of pr on temperature for non-Newtonian fluid flow. 

Figures 1 and 2 describe the impact of Prandtl number Pr on the 

temperature profile. The thermal conductivity of the fluid declines by 
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enhancing the Prandtl number Pr. Thus the transfer of the heat slows which 

falls down the temperature of flow distribution. This figure validates the 

above result i.e. the temperature of the flow distribution falls when Prandtl 

number Pr increases. 

 

Figure 3. Effect of fluid parameter b on temperature for Newtonian fluid 

flow  .1n  

 

Figure 4. Effect of fluid parameter b on temperature for non-Newtonian fluid 

flow  .2n  
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Figure 5. Effect of fluid parameter b on temperature for non-Newtonian fluid 

flow  3n  

 

Figure 7. Effect of fluid parameter b on velocity for non-Newtonian fluid flow 

 .2n  
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Figure 6. Effect of fluid parameter b on velocity for Newtonian fluid flow 

 .1n  

 

Figure 8. Effect of fluid parameter b on velocity for non-Newtonian fluid flow 

 .3n  

Figure 3 shows the characteristics of the fluid parameter b on a 

temperature for Newtonian fluid and Figures 4 and 5 show the impact of fluid 

parameter b on a temperature profile for non-Newtonian Sisko fluid. As 

increasing fluid parameter b temperature enhances for all three power-law 

indexes. Figure 6 describes the characteristics of the fluid parameter b on 

velocity for Newtonian fluid and Figures 7 and 8 show the impact of fluid 

parameter b on velocity profile for non-Newtonian Sisko fluid. Here opposite 
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trends for velocity than temperature. As increasing fluid parameter b, 

velocity decreases for all three power-law index. So, by controlling fluid 

parameter b and power-law index we can control the temperature and 

velocity of fluid flow. 

The impact of Eckert number Ec  on temperature is demonstrated in 

Figure 9 for power law index  1n  Newtonian fluid. Figures 10 and 11 

show temperature profile for different Eckert number Ec  of power-law index 

2n  and 3 for non-Newtonian fluid. As Eckert number Ec  is the relation 

between flow kinetic energy to heat enthalpy difference. So increase in Eckert 

number causes an enhancement in the kinetic energy. We knew that 

temperature is defined as average kinetic energy. Thus, the temperature of 

the fluid rises. It is depicted from these graphs that fluid temperature 

increases when Eckert number Ec  increases.  

 

Figure 10. Impact of Eckert number on temperature for non-Newtonian fluid 

flow  .2n  
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Figure 9. Impact of Eckert number on temperature for Newtonian fluid flow 

 .1n  

 

Figure 11. Impact of Eckert number on temperature for non-Newtonian fluid 

flow  .3n  

7. Conclusions 

In this research work, one parameter group-theoretic similarity method is 

applied. The similarity solution is derived by converting a nonlinear system of 
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partial differential equations to a nonlinear system of ordinary differential 

equations using similarity variables. MATLAB BVP4C coding was employed 

to find numerical solutions to the reduced problem. The results are presented 

graphically for the velocity and temperature profiles to show the influence of 

the pertinent parameters.  

 The temperature is lower in the Newtonian fluid  1n  than the 

Sisko fluid  3,2n  and the reverse trend is observed for velocity. 

The different trend observed for case .0n  The temperature and 

velocity are higher in the case of 0n  than .3,2,1n  

 The velocity and temperature of the fluid can be controlled at a 

required level by adjusting the Sisko fluid material parameter b and 

the power index n.  

 The viscous dissipation effects are observed through the Eckert 

number. Temperature increases as increasing Eckert number in all 

cases of power-law index .3,2,1n  

 The temperature profile decreases as increasing Prandtl number. 
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