
International Journal of Graph Theory and its Applications
Volume 1 Issue 1 (2015) Pages 3–56
c© 2015Mili Publications !

International Journal of Graph Theory and Its Applications 
!"#$%&'()'*++$&'()',-14)'./0&+'( 

© 2014 Mili Publications!
!

"#$#!%&'()*&'+,-!./01),'!23&--+4+,&'+567!!

8)9:5;<-7!+6<)=)6<)6'!-)'->!%);;+4+)3<?.+**56-!,561),'/;)@!

!"#$%&'()%#$%$*++'(,-.%/0%1!

A),)+B)<!123%4-5#$-.!

677-+,-.%12! C,&<)*+,!D<+'5;7!E56F'&6F!.(+!

!

!"#$%&%'"#$()*++"$,-.(/,%!0)(!

0"#,*('-1(234(*5#/$%#/()0-(

G)=&;'*)6'!54!%&'()*&'+,-!

H)+1+6F!I+&5'56F!J6+B);-+'9!

H)+1+6F!$###KK>!L@A@!2(+6&!

D?*&+37!!

G)=&;'*)6'!%&'()*&'+,-!&6<!25*=/');!

M)6F-(/+!2533)F)!

M)0)+!#NO###>!L@A@!2(+6&!

D?*&+37!!

%67892:8(

C!F;&=(!+-!-&+<!'5!0)!-9**)';+,!+4!+'-!&/'5*5;=(+-*!12!

;<(-389=4>:8?=3(

P(;5/F(5/'! '(+-! =&=);! F;&=(-! &;)! 4+6+')>! -+*=3)! &6<! /6<+;),')<@! Q5;! &!

F;&=(!">!@!

P()! ,3&--+4+,&'+56! 54! -9**)';+,! F;&=(-! 54! 5;<);! #O !:);)! ,5*=3)')<! 09!

R&6F!&6<!S/!T$UV>!&6<!3&'');!'()!,3&--+4+,&'+56!54!-9**)';+,!F;&=(-!54!5;<);!&!

=;5</,'!54!':5!<+-'+6,'!=;+*)-!:);)!F+B)6!09!L;&)F);!)'!&3@!+6!T$N>!$WV@!

P();)!&;)!*&69!;)-/3'-!45;!,/0+,!-9**)';+,!F;&=(->!45;!)X&*=3)>!256<);!

&6<!G50,-Y69+!TNV!;)-/3')<!+6!&!,5*=3)')!3+-'!54!,/0+,!-9**)';+,!F;&=(-!56!/=!

'5!ZWU!B);'+,)-@!H9!&6&39[+6F!&/'5*5;=(+-*!F;5/=-!54!F;&=(->!&!,3&--+4+,&'+56!

54! ,/0+,!-9**)';+,!F;&=(-!54!5;<);! O"# !:&-!F+B)6!09!Q)6F!)'!&3@! TZV@!J-+6F!

Monochromatic Structures inEdge-coloured Graphs andHypergraphs - A survey
Shinya Fujita1,a, Henry Liu2,b,∗, Colton Magnant3

1International College of Arts and Sciences, Yokohama City University, 22-2, Seto,Kanazawa-ku, Yokohama, 236-0027, Japanemail: fujita@yokohama-cu.ac.jp
2Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, UniversidadeNova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugalemail: h.liu@fct.unl.pt |henry.liu@cantab.net
3Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Ave,Statesboro, GA 30460, USA

email: cmagnant@georgiasouthern.edu
Received 23 February 2015; Revised 17 April 2015; Published online 16 June 2015

Corresponding editor: Yongtang Shi
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regarding these questions. In most cases, the edge-coloured (hyper)graph iseither complete, or non-complete but with a density constraint such as havingfixed independence number. For some problems, a restriction may be imposed onthe edge-colouring, such as when it is a Gallai colouring (i.e. the edge-colouringdoes not contain a triangle with three distinct colours). Many examples of edge-colourings will also be presented, each one either showing the sharpness of aresult, or supporting a possible conjecture.
Keywords Edge-colouring; Gallai colouring; independence number; graph partitioning; graph
covering; hypergraph
AMS subject classifications 05C05; 05C15; 05C35; 05C38; 05C40; 05C55; 05C65; 05C70

1 Introduction

In this survey article, we refer to the books by Bollobás [13] and Berge [10] for any
undefined terms in graph theory and hypergraph theory. For a graph G (resp. hypergraph
H), the vertex set and edge set are denoted by V (G) and E(G) (resp. V (H) and E(H)).
Unless otherwise stated, all graphs and hypergraphs are finite, undirected, and without
multiple edges or loops. For a hypergraph H, an edge consists of a subset of (unordered)
vertices of H, and when we wish to emphasize that an edge has t vertices, we may call such
an edge a t-edge. A non-empty t-uniform hypergraph is trivial if it consists of fewer than t
isolated vertices, otherwise it is non-trivial. In particular, a trivial graph has a single vertex.
The complete graph (or clique) on n vertices is denoted by Kn, the cycle on n vertices (or of
length n) is denoted by Cn, the path of length ` is denoted by P̀ , and the complete bipartite
graph with class-sizes m and n is denoted by Km,n. The t-uniform complete hypergraph
on n vertices is denoted by Kt

n. For a vertex v and disjoint vertex subsets X ,Y in a graph
G, the degree of v and the minimum degree of G are denoted by deg(v) and δ(G), and
the bipartite subgraph induced by X and Y is denoted by (X ,Y ). An independent set in a
graph G (resp. hypergraph H) is a subset of vertices that does not contain an edge of G
(resp. H). The independence number of G, denoted by α(G), is the maximum cardinality
of an independent set of G, and α(H) is similarly defined for H. For an integer r ≥ 1,
an r-edge-colouring of a graph G, or simply an r-colouring, is a function φ : E(G)→
{1,2, . . . ,r}. A similar definition holds for hypergraphs with H in place of G. Informally,
an r-colouring of G (resp. H) is an assignment where every edge of G (resp. H) is given one
of r possible colours. When we do not wish to emphasize the number of colours involved,
we may simply call such an assignment an edge-colouring. In the case of a 2-colouring
of a graph G, we often assume that the two colours are red and blue. We say that the red
subgraph is the subgraph R of G with V (R) =V (G) and consisting of the red edges, with a
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Monochromatic Structures in Graphs and Hypergraphs - A survey 5
similar definition for the blue subgraph B with the blue edges. Finally, we will often deal
with partitions of vertex sets of graphs and hypergraphs, with all parts as equal as possible.
For a set S with n elements, we call a partition of S into S1, . . . ,Sp a near-equal partition if
we have ||Si|−|S j|| ≤ 1 for every 1≤ i, j≤ p. Note that such a partition is unique for fixed
n and p, and for every 1≤ i≤ p, we have |Si|=

⌊ n
p

⌋
or |Si|=

⌈ n
p

⌉
.

The subject of edge-colourings of graphs has been a well-studied topic of graph theory
over the last several decades. A landmark result is arguably Ramsey’s theorem, published
in 1930, for which the simplest version states that: Given an integer k ≥ 2, whenever
the edges of a sufficiently large complete graph are coloured with red and blue, there is
a monochromatic copy of the complete graph Kk. Since then, a near-endless amount of
related research has been carried out, leading to the foundation of several branches in the
subject. For example, in (generalised) graph Ramsey theory, one is interested in finding
monochromatic structures in edge-coloured graphs, and a central problem is to determine
the Ramsey number Rr(H), the minimum integer n such that for any r-colouring of the
complete graph Kn, there exists a monochromatic copy of the graph H. On the other hand,
the area of anti-Ramsey theory, initiated by Erdős, Simonovits and Sós [28] (1973), deals
with a similar concept, where one is interested in rainbow coloured subgraphs (i.e. all edges
of the subgraph have distinct colours) in edge-coloured graphs. A function of particular
interest is the anti-Ramsey number AR(n,H), the maximum integer r for which there exists
an r-colouring of the complete graph Kn, such that there is no rainbow copy of the graph
H. Another well-studied area is Ramsey-Turán theory, which is an area that features the
connection between Ramsey and Turán type problems. Here, a function of interest is the
Ramsey-Turán number RTr(n,H,k), which is the maximum number of edges that a graph G
on n vertices can have such that, G has no independent set of k vertices, and there exists an
r-colouring of G with no monochromatic copy of the graph H. This area probably emerged
in the 1960s when Andrásfai [4, 5] answered some questions of Erdős that concern the
function RTr(n,H,k).

Our aim in this survey is to consider a class of problems which belong to the graph
Ramsey theory area. We are mainly interested in two questions. Suppose that a graph is
given an edge-colouring – we sometimes call such a graph a host graph, and usually think
of it as a rather large graph. The first question is: On how many vertices can we find a
monochromatic subgraph of a certain type, such as a connected subgraph, or a cycle, or
some type of tree? The second question is: How many such monochromatic subgraphs do
we need so that their vertex sets form either a partition or a covering of the vertices of the
host graph? We shall review known results and conjectures related to these two questions in
Sections 2 and 3. In Section 4, we consider the two questions in hypergraph settings. Some
of the work date as far back as the 1960s, and the research had been particularly intense

International Journal of Graph Theory and its Applications 1 (2015) 3–56



6 Shinya Fujita, Henry Liu, Colton Magnant
since around the 1990s. We will, in particular, present many examples of edge-colourings
of graphs and hypergraphs, where each edge-colouring shows either the sharpness of a
result, or the support of a possible conjecture. Our results and conjectures here will have
some overlaps with recent surveys of Kano and Li [67] (2008), Fujita, Magnant and Ozeki
[39] (2010), and Gyárfás [47] (2011). We will attempt to minimise these overlaps, and also
to emphasize more recent developments.

2 Monochromatic Structures in Graphs

In this section, we consider the problem of finding monochromatic subgraphs in edge-
coloured graphs. A first result in this direction is the following observation, made a long
time ago by Erdős and Rado: A graph is either connected, or its complement is
connected. In other words, for every 2-colouring of the edges of a complete graph, there
exists a monochromatic spanning connected subgraph (or equivalently, a monochromatic
spanning tree). A substantial generalisation of this observation is to ask for the existence
of a large monochromatic subgraph of a certain type in an edge-coloured graph. Here,
we present many known results and problems related to this question. In many cases, the
edge-coloured host graph is a complete graph.

2.1 Connected and k-connected subgraphs

To extend the observation of Erdős and Rado, one way is to ask what happens when r ≥ 2
colours are used to colour the complete graph Kn. In this direction, Gerencsér and Gyárfás
[43] (1967) asked for the order of a monochromatic connected subgraph that one can always
find. Gyárfás and Füredi independently proved the following result (see also Liu et al. [77]
for a short proof).

Theorem 2.1.1 (Gyárfás - 1977 [44]; Füredi - 1981 [40]) Let r ≥ 2. For every r-colouring
of Kn, there exists a monochromatic connected subgraph on at least n

r−1 vertices. This
bound is sharp if r−1 is a prime power.

To see the sharpness, we consider the following well-known construction of an r-
colouring on Kn, using affine planes. This construction will also be important for many
more problems that we will encounter throughout the entire survey.

Construction 2.1.2 Let r− 1 be a prime power, and consider the finite affine plane
AG(2,r− 1) over the field Fr−1 (see the appendix in Section 5). Let p1, . . . , p(r−1)2 be the
points and P1, . . . ,Pr be the parallel classes of lines of AG(2,r− 1). Now, take a near-
equal partition of the vertex set of Kn into (r− 1)2 classes V1, . . . ,V(r−1)2 . We define the
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Monochromatic Structures in Graphs and Hypergraphs - A survey 7
r-colouring ψ on Kn as follows. If u ∈ Vi and v ∈ Vj are two vertices of Kn and 1 ≤ i 6=
j ≤ (r−1)2, then let ψ(uv) = ` if and only if pi and p j lie on the same line in the class P`
(where 1≤ `≤ r). Colour the edges inside the classes V1, . . . ,V(r−1)2 arbitrarily.

Then in the r-colouring ψ of Kn, every monochromatic connected subgraph has at most
(r−1)

⌈ n
(r−1)2

⌉
< n

r−1 +r vertices. Also, a very noteworthy feature about the r-colouring ψ
is that, it can be obtained by substituting edge-coloured cliques (sometimes called blocks)
for the vertices of an edge-coloured graph – in this case an r-colouring of K(r−1)2 , with all
edges between a pair of cliques retaining the colour of the corresponding two substituted
vertices. As we shall see, this “colouring by substitution” technique will be important in
many more constructions of edge-colourings.

To extend Theorem 2.1.1, we may ask for the existence of a large monochromatic
subgraph with high vertex connectivity in an edge-coloured complete graph. Recall that a
graph G is k-connected if |V (G)| > k, and for any set C ⊂ V (G) with |C| < k, the graph
G−C is connected. The following question was asked by Bollobás.

Question 2.1.3 (Bollobás - 2003 [14]) Let 1 ≤ s < r and k ≥ 1. Whenever we have an
r-colouring of the edges of Kn, on how many vertices can we find a k-connected subgraph,
using at most s colours?

We shall focus on Bollobás’ question only for the case when the desired subgraph is
monochromatic, i.e. s = 1. For results concerning s ≥ 2, we refer the reader to Liu et
al. [76]. In order to state the results, we make the following definition. Let m(n,r,k) denote
the maximum integer m such that, every r-colouring of Kn contains a monochromatic k-
connected subgraph on at least m vertices. Then, our task is to determine the function
m(n,r,k).

If n≤ 2r(k−1), then we have the following construction of Matula [82] (1983).

Construction 2.1.4 Let n ≤ 2r(k− 1). We consider the standard decomposition of K2r

into r edge-disjoint “zig-zag rotational” Hamilton paths (see for example [13], Ch. I,
Theorem 11). That is, let v1, . . . ,v2r be the vertices of K2r, and consider the Hamilton path
Q1 = v1v2rv2v2r−1 · · ·vrvr+1. For 1 < ` ≤ r, let Q` be the Hamilton path obtained from
Q1 by adding `− 1 to the indices of the vertices of Q1, modulo 2r. Then, Q1, . . . ,Qr is a
decomposition of K2r into edge-disjoint Hamilton paths, and moreover, every vertex of K2r

is the end-vertex of exactly one Hamilton path. We colour the Hamilton path Q` with colour
` for all 1≤ `≤ r. Now, we obtain an r-colouring of Kn as follows. Partition the vertices of
Kn into V1, . . . ,V2r such that |Vi| ≤ k−1 for all 1≤ i≤ 2r. For 1≤ i 6= j ≤ 2r, we give all
edges of (Vi,Vj) the colour of viv j, and all edges inside Vi the colour of the Hamilton path
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8 Shinya Fujita, Henry Liu, Colton Magnant
in K2r with vi as an end-vertex (i.e. for 1 ≤ ` ≤ r, all edges inside V` and Vr+` are given
colour `).

We see that in this r-colouring of Kn, there is no monochromatic k-connected subgraph
at all, and hence m(n,r,k) = 0 for n≤ 2r(k−1).

In the case r = 2, Bollobás and Gyárfás [15] (2003) gave the following construction of
a 2-colouring of Kn for n> 4(k−1).

Construction 2.1.5 Let n > 4(k− 1). We define a 2-colouring on Kn as follows. Let
V1, V2,V3,V4 be four disjoint sets of vertices of Kn, each with size k− 1, and let V5 be
the remaining vertices (note that V5 6= /0). We colour all edges of (Vi,Vj) red if {i, j} ∈
{{1,2},{1,3},{2,4},{1,5},{2,5}}, and blue otherwise. The edges inside the classes Vi

are arbitrarily coloured.

We see that in Constructions 2.1.4 and 2.1.5, the edge-colourings of Kn are obtained by
the “colouring by substitution” technique. In the case of the former, we have substituted
monochromatic cliques for the vertices of an r-coloured K2r. In the latter, the 2-colouring
of Kn is obtained by substituting arbitrarily 2-coloured cliques for the vertices of K5, where
the K5 is given a 2-colouring with both colour classes forming a bull (i.e. the graph with
two pendant edges attached to two vertices of a triangle).

In the 2-colouring of Kn in Construction 2.1.5, it is easy to check that the
monochromatic k-connected subgraph with maximum order has n− 2k+ 2 vertices. That
is, we have m(n,2,k)≤ n−2k+2 if n> 4(k−1). Inspired by Construction 2.1.4 for r = 2
and Construction 2.1.5, Bollobás and Gyárfás made the following conjecture.

Conjecture 2.1.6 (Bollobás, Gyárfás - 2003 [15]) For n > 4(k−1), we have m(n,2,k) =
n−2k+2.

The two constructions imply that if Conjecture 2.1.6 is true, then the bound n> 4(k−1)
is the best possible. Many partial results to the conjecture are known. The conjecture has
been verified by Bollobás and Gyárfás for k = 2 [15]; and by Liu et al. for k = 3 [75], and
for n≥ 13k−15 [77]. The best known partial result is by Fujita and Magnant.

Theorem 2.1.7 (Fujita, Magnant - 2011 [36]) For n > 6.5(k− 1), we have m(n,2,k) =
n−2k+2.

When r ≥ 3 colours are used, Liu et al. also studied the function m(n,r,k).

Theorem 2.1.8 (Liu, Morris, Prince - 2004 [77]) Let r ≥ 3.

(a) m(n,r,k)≥ n
r−1 −11(k2− k)r.

International Journal of Graph Theory and its Applications 1 (2015) 3–56



Monochromatic Structures in Graphs and Hypergraphs - A survey 9
(b) If r−1 is a prime power, then m(n,r,k)< n−k+1

r−1 + r.

In particular, if r and k are fixed and r−1 is a prime power, then m(n,r,k)= n
r−1 +O(1).

To obtain part (b), we can easily modify Construction 2.1.2, as follows.

Construction 2.1.9 For r ≥ 3 and n > 2r(k− 1), we define the r-colouring ψ′ on Kn as
follows. Take disjoint sets of vertices U1, . . . ,Ur of Kn, each with k− 1 vertices. Let W
be the remaining vertices (note that W 6= /0), and give the complete subgraph on W the
r-colouring ψ as described in Construction 2.1.2. Now for 1 ≤ i 6= j ≤ r, u ∈Ui, v ∈U j

and w ∈W, let ψ′(uv) = min{i, j} and ψ′(uw) = i. The edges inside the classes Ui are
arbitrarily coloured.

It is easy to see that in the r-colouring ψ′ of Kn, the monochromatic k-connected
subgraph with maximum order has at most (r−1)

⌈ n−r(k−1)
(r−1)2

⌉
+ k−1< n−k+1

r−1 + r vertices.

Hence, m(n,r,k)< n−k+1
r−1 + r for n> 2r(k−1). Moreover, Construction 2.1.4 implies that

m(n,r,k) = 0 for n≤ 2r(k−1). In view of these two constructions, Liu et al. also made the
following conjecture.

Conjecture 2.1.10 (Liu, Morris, Prince - 2004 [77]) Let r ≥ 3 and n> 2r(k−1). Then

m(n,r,k)≥ n− k+1
r−1

.

The conjecture has been verified by Liu et al. for r = 3 and large n.

Theorem 2.1.11 (Liu, Morris, Prince - 2004 [77]) For n≥ 480k, we have

n− k+1
2

≤ m(n,3,k)≤ n− k+1
2

+1.

Moreover, equality holds in the lower bound if and only if n+ k ≡ 1 (mod 4).

We also see that Theorem 2.1.8(a) gives a good bound only when k = o(
√

n). Liu and
Person used Szemerédi’s regularity lemma to obtain the following improvement.

Theorem 2.1.12 (Liu, Person - 2008 [78]) Let r≥ 3 be fixed, and k = o(n). Then, we have
m(n,r,k)≥ n

r−1 −o(n). Equality holds if r−1 is a prime power.

Finally, we mention a slightly different version of Question 2.1.3, for s = 1. Let m∗(r,k)
be the smallest integer n such that, any r-colouring of Kn has a monochromatic k-connected
subgraph. The problem of the determination of the function m∗(r,k) was proposed by
Matula. Note that in this problem, one does not worry about the order of a monochromatic
k-connected subgraph in r-coloured complete graphs, but only that such a subgraph exists.
Matula proved the following result.

International Journal of Graph Theory and its Applications 1 (2015) 3–56



10 Shinya Fujita, Henry Liu, Colton Magnant
Theorem 2.1.13 (Matula - 1983 [82]) Let k ≥ 2.

(a) 4(k−1)+1≤ m∗(2,k)<
(

3+
√

11
3

)
(k−1)+1.

(b) For r ≥ 2, we have 2r(k−1)+1≤ m∗(r,k)< 10
3 r(k−1)+1.

The lower bounds follow from Construction 2.1.4. Matula also made the following
conjecture. It is a slightly weaker assertion than the combination of Conjectures 2.1.6 and
2.1.10.

Conjecture 2.1.14 (Matula - 1983 [82]) For r,k ≥ 2, we have m∗(r,k) = 2r(k−1)+1.

Matula remarked that by using some tedious arguments, Conjecture 2.1.14 holds for
k = 2,3,4,5, and that the upper bound of Theorem 2.1.13(a) can be improved to somewhat
below 4.7(k−1)+1.

Next, we consider the analogous problem when the host graph is a complete bipartite
graph. We may ask for the order of a monochromatic connected subgraph that we can
always find in any r-colouring of a complete bipartite graph Km,n. For this, Gyárfás proved
the following result.

Lemma 2.1.15 (Gyárfás - 1977 [44]) Let r ≥ 1. For every r-colouring of the complete
bipartite graph Km,n, there exists a monochromatic connected subgraph on at least m+n

r
vertices.

Lemma 2.1.15 easily implies the first part of Theorem 2.1.1. Indeed, let Kn be given
an r-colouring (r ≥ 2). If no colour spans a connected subgraph on n vertices, then there
is a colour that spans a connected component on vertex set X with |X | < n. By letting Y
be the remaining vertices, we may apply Lemma 2.1.15 on the (r− 1)-coloured complete
bipartite subgraph (X ,Y ), to obtain a monochromatic connected subgraph on at least n

r−1
vertices.

To see the sharpness of Lemma 2.1.15, we may consider the following example.

Construction 2.1.16 Take near-equal partitions of each class of Km,n into r sets, say
U1, . . . ,Ur and V1, . . . ,Vr. For 1 ≤ i, j ≤ r, colour all edges of (Ui,Vj) with colour i− j
(mod r).

Then in this r-colouring of Km,n, the monochromatic connected subgraph with
maximum order has at most m+n

r +2 vertices, since we have |Ui| ≤ m
r +1 and |Vi| ≤ n

r +1
for all 1≤ i≤ r.

Inspired by Lemma 2.1.15, Liu et al. [77] made the conjecture that the same result
holds when we want to find a monochromatic k-connected subgraph, provided that the
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Monochromatic Structures in Graphs and Hypergraphs - A survey 11
classes of Km,n are large: For r ≥ 3 and m,n ≥ rk, any r-colouring of Km,n contains a
monochromatic k-connected subgraph on at least m+n

r vertices. Note that the bound of
m+n

r does not depend on k. Lemma 2.1.15 implies that the conjecture holds for k = 1.
The sharpness of the conjecture can again be seen by Construction 2.1.16 – note that the
condition m,n≥ rk implies that, the monochromatic k-connected subgraph with maximum
order in the r-colouring has at most m+n

r +2 vertices.
However, we see that the case r = 2 is somehow omitted. Indeed, we present the

following example of an r-colouring of Km,n, which is a counter-example to Liu et al.’s
conjecture for small n.

Construction 2.1.17 Let r,k ≥ 2, n ≤ 2r(k− 1) and m ≥ 6(r+ 1). Partition the m-class
of Km,n into 2r− 1 near-equal sets, say U1, . . . ,U2r−1, and the n-class into 2r near-equal
sets, say V1, . . . ,V2r. A result of Laskar and Auerbach [72] (1976) implies that the complete
bipartite graph K2r−1,2r can be decomposed into r edge-disjoint Hamilton paths, where
every vertex of the 2r-class is an end-vertex of exactly one Hamilton path. Colour the
Hamilton paths with r distinct colours, and let {u1, . . . ,u2r−1} and {v1, . . . ,v2r} be the
classes of the K2r−1,2r. Now, for 1≤ i≤ 2r−1 and 1≤ j≤ 2r, we give all edges of (Ui,Vj)

the colour of the edge uiv j.

Then, n≤ 2r(k−1) implies |Vj| ≤ k−1 for all 1≤ j≤ 2r. Hence in this r-colouring of
Km,n, the monochromatic k-connected subgraph of maximum order has at most

⌈ m
2r−1

⌉
+

2
⌈ n

2r

⌉
< m+n

r vertices (the last inequality follows from m≥ 6(r+1)).
In light of this construction, we revise the conjecture of Liu et al., as follows.

Conjecture 2.1.18 (Refinement of Liu, Morris, Prince - 2004 [77]) Let r≥ 2 and m≥ n>
2r(k− 1). Then, for any r-colouring of the complete bipartite graph Km,n, there exists a
monochromatic k-connected subgraph on at least m+n

r vertices.

By using a bipartite version of Szemerédi’s regularity lemma, Liu and Person, in
response to Liu et al.’s original conjecture, obtained the following partial result.

Theorem 2.1.19 (Liu, Person - 2008 [78]) Let r ≥ 2 be fixed, m ≥ n ≥ k, and k = o(n).
Then, for every r-colouring of the compete bipartite graph Km,n, there exists a
monochromatic k-connected subgraph on at least m+n

r −o(n) vertices.

2.2 Cycles and regular subgraphs

Given an edge-coloured graph, we may ask for the existence of a long monochromatic
cycle. Recall that the circumference of a graph G, denoted by c(G), is the length of a
longest cycle in G. Faudree et al. proved the following result.
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Theorem 2.2.1 (Faudree, Lesniak, Schiermeyer - 2009 [29]) Let G be a graph of order
n ≥ 6, and let G be the complement of G. Then max{c(G),c(G)} ≥

⌈ 2n
3

⌉
, and this bound

is sharp.

The sharpness can be easily seen by taking G to be the graph consisting of
⌊ n

3

⌋
isolated

vertices and a clique on the remaining
⌈ 2n

3

⌉
vertices. Note that Theorem 2.2.1 is equivalent

to saying that, in any 2-colouring of Kn (n ≥ 6), there exists a monochromatic cycle with
length at least

⌈ 2n
3

⌉
.

When r ≥ 3 colours are used to colour Kn, we may again consider the r-colouring ψ
on Kn, as described in Construction 2.1.2. Then, if r− 1 is a prime power, the longest
monochromatic cycle has length at most n

r−1 + r. Inspired by the construction, Faudree et
al. also made the following conjecture.

Conjecture 2.2.2 (Faudree, Lesniak, Schiermeyer - 2009 [29]) For r ≥ 3, let Kn be given
an r-colouring. For 1≤ i≤ r, let Gi be the graph on n vertices induced by colour i. Then

max{c(G1),c(G2), . . . ,c(Gr)} ≥
n

r−1
.

Let f (n,r) denote the maximum integer ` such that every r-colouring of Kn contains
a monochromatic cycle of length at least `. Then f (n,r) < n

r−1 + r if r− 1 is a prime
power, while Conjecture 2.2.2 claims that f (n,r)≥ n

r−1 whenever r≥ 3. Fujita [31] (2011)
observed that the conjecture does not hold for small n, by considering the decomposition of
K2r into r edge-disjoint “zig-zag rotational” Hamilton paths as described in Construction
2.1.4, and giving each Hamilton path a distinct colour. Clearly, this r-colouring of K2r

implies f (n,r) = 0 for n ≤ 2r, since by deleting 2r− n vertices from K2r, there is no
monochromatic cycle at all in the resulting r-colouring of Kn.

Conjecture 2.2.2 remains open for sufficiently large n – certainly, we need n > 2r to
hold. In the case when n is linear in r, Fujita et al. proved the following result.

Theorem 2.2.3 (Fujita, Lesniak, Tóth - 2015 [35])

(a) For r ≥ 3, we have f (2r+2,r) = 3. For r = 1,2, we have f (2r+2,r) = 4.

(b) For any pair of integers s,c≥ 2, there exists r0 = r0(s,c) such that f (sr+c,r) = s+1
for all r ≥ r0.

In particular, part (b) implies that Conjecture 2.2.2 holds for n= sr+c with r sufficiently
large. By using a result of Erdős and Gallai [26] (1959), which is a Turán type result for
the cycle, Fujita also obtained the following slightly weaker version of the conjecture.

Theorem 2.2.4 (Fujita - 2011 [31]) For n≥ r ≥ 1, we have f (n,r)≥ n
r .
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As a generalisation, we may ask for the largest order of a monochromatic connected

d-regular subgraph, where d ≥ 2. Thus, the case d = 2 corresponds to cycles. Sárközy et
al. proved the following result.

Theorem 2.2.5 (Sárközy, Selkow, Song - 2013 [91]) For every ε > 0 and integers r,d ≥
2, there exists n0 = n0(ε,r,d) such that the following holds. For all n ≥ n0 and any r-
colouring of Kn, there exists a monochromatic connected d-regular subgraph on at least
(1−ε)n

r vertices.

We see that Theorem 2.2.5 can be seen as an extension of Theorem 2.2.4. The slightly
surprising fact about this extension is that the value of d plays a fairly minor role, in the
sense that the order of a monochromatic connected d-regular subgraph that we can find is
almost as large as that of a monochromatic cycle, i.e. approximately n

r , and independent of
d.

When the edge-coloured host graph is not complete, Li et al. proposed the following
problem, where there is a condition on the minimum degree of the host graph.

Problem 2.2.6 (Li, Nikiforov, Schelp - 2010 [74]) Let 0< c< 1 and let n be a sufficiently
large integer. If G is a graph of order n with δ(G)> cn, and G is given a 2-colouring with
red and blue subgraphs R and B, what is the minimum possible value of max{c(R),c(B)}?

As opposed to just finding a single monochromatic cycle of a specified length, some
authors have considered the problem of finding all cycle lengths in a specified interval. In
this direction, Li et al. conjectured the following pancyclic type result for monochromatic
cycles in 2-coloured graphs.

Conjecture 2.2.7 (Li, Nikiforov, Schelp - 2010 [74]) Let n≥ 4 and G be a graph of order
n with δ(G) > 3n

4 . If G is given a 2-colouring with red and blue subgraphs R and B, then
for each integer ` ∈

[
4,
⌈ n

2

⌉]
, either C` ⊂ R or C` ⊂ B.

They observed the following example, which shows that if this conjecture is true, then
it is tight: Let n = 4p. Colour the edges of the complete bipartite graph K2p,2p red, and add
a blue Kp,p in each of its classes. Then we have a 2-coloured graph G with δ(G) = 3n

4 , but
clearly the colouring produces no monochromatic odd cycle.

In the same paper, Li et al. proved the following partial result.

Theorem 2.2.8 (Li, Nikiforov, Schelp - 2010 [74]) Let ε > 0 and G be a graph of suf-
ficiently large order n with δ(G) > 3n

4 . If G is given a 2-colouring with red and blue
subgraphs R and B, then for each integer ` ∈

[
4,
⌊
( 1

8 −ε)n
⌋]

, either C` ⊂ R or C` ⊂ B.
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Benevides et al. offered the following slightly stronger solution but for large n. Here

we need a definition. Let n = 4p and G be a graph isomorphic to Kp,p,p,p. Then G is said to
be 2-bipartite 2-edge-coloured if the edges of G are 2-coloured so that the graph induced
by each of the colours is bipartite. Such a 2-bipartite 2-edge-coloured graph has minimum
degree 3n

4 but contains no monochromatic odd cycles.

Theorem 2.2.9 (Benevides, Łuczak, Scott, Skokan, White - 2012 [9]) There exists a
positive integer n0 with the following property. Let G be a graph of order n ≥ n0 with
δ(G) ≥ 3n

4 . Suppose that G is given a 2-colouring with red and blue subgraphs R and B.
Then either C` ⊂ R or C` ⊂ B for all `∈

[
4,
⌈ n

2

⌉]
, or n = 4p, G = Kp,p,p,p and the colouring

is a 2-bipartite 2-edge-colouring.

2.3 Subgraphs with bounded diameter

We consider the problem of finding monochromatic subgraphs with bounded diameter in
edge-coloured complete graphs. For r,D ≥ 2, define g(n,r,D) to be the maximum integer
m such that, for every r-colouring of Kn, there is a monochromatic subgraph with diameter
at most D on at least m vertices. We remark that we neglect the case D = 1, since this is
equivalent to the problem of the determination of the classical Ramsey number Rr(Km).
The problem of the determination of the function g(n,r,D) was proposed by Erdős (for
D = 2), and Mubayi (for D≥ 3).

Problem 2.3.1 (Erdős - 1996 [24]; Mubayi - 2002 [83]) For r, D ≥ 2, determine the
function g(n,r,D).

By simply considering the largest monochromatic star at any vertex of an r-coloured
Kn, Erdős noticed that g(n,r,2)≥ n−1

r +1, and asked if this bound is optimal. Fowler then
proved that the answer is yes, if and only if r ≥ 3. He determined g(n,2,2) exactly, and
g(n,r,2) sharply for r ≥ 3.

Theorem 2.3.2 (Fowler - 1999 [30])

(a) g(n,2,2) =
⌈ 3n

4

⌉
.

(b) For fixed r ≥ 3, we have g(n,r,2) = n
r +O(1).

To see that g(n,2,2)≤
⌈ 3n

4

⌉
, we may consider the following 2-colouring of Kn. Take a

near-equal partition of the vertices of Kn into sets V1,V2,V3,V4. Colour all edges of (Vi,Vi+1)

in red for i = 1,2,3, all other edges between the classes in blue, and the edges inside the
classes arbitrarily. Then, the subgraph with diameter at most 2 and of maximum order has
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⌈ 3n

4

⌉
vertices. The proofs of g(n,2,2)≥

⌈ 3n
4

⌉
and g(n,r,2)≤ n

r +O(1) for r≥ 3 by Fowler
are more complicated.

Now, we consider D≥ 3. For the case r = 2, the following result is folkloristic, and an
early citation can be found in Bialostocki et al. [12].

Theorem 2.3.3 We have g(n,2,D) = n for all D ≥ 3. That is, in every 2-colouring of Kn,
there exists a monochromatic spanning subgraph with diameter at most D.

For r,D ≥ 3, we again have the upper bound of g(n,r,D) < n
r−1 + r if r− 1 is a prime

power, from Construction 2.1.2. Mubayi managed to prove a lower bound for g(n,r,3).

Theorem 2.3.4 (Mubayi - 2002 [83]) For r ≥ 2, we have

g(n,r,3)>
n

r−1+ 1
r

.

For r = 3 and D≥ 4, Mubayi also managed to compute g(n,3,D) exactly.

Theorem 2.3.5 (Mubayi - 2002 [83]) For D≥ 4, we have

g(n,3,D) =

{ n
2 +1 if n≡ 2 (mod 4),⌈ n

2

⌉
otherwise.

Thus in Problem 2.3.1, the determination of the function g(n,r,D), in a sharpness sense
for large n, remains open for r = D = 3, and for r ≥ 4, D≥ 3.

2.4 Subgraphs with large minimum degree

In an edge-coloured graph, how large a monochromatic subgraph can we find, if the host
graph and the monochromatic subgraphs have constraints on their minimum degrees? Let
h(n,c,d,r) be the maximum integer m such that, for every r-colouring of any graph of
order n and with minimum degree at least c, there exists a monochromatic subgraph with
minimum degree at least d and order at least m. Caro and Yuster proposed the problem of
the determination of h(n,c,d,r). They proved the following results.

Theorem 2.4.1 (Caro, Yuster - 2003 [19])

(a) For all d ≥ 1 and c> 4(d−1),

h(n,c,d,2)≥ c−4d +4
2(c−3d +3)

n+
3d(d−1)

4(c−3d +3)
.
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(b) For all d ≥ 1 and c≤ 4(d−1), if n is sufficiently large, then h(n,c,d,2)≤ d2−d+1.

In particular, h(n,c,d,2) is independent of n.

Theorem 2.4.2 (Caro, Yuster - 2003 [19]) For all d ≥ 1, r ≥ 2 and c > 2r(d− 1), there
exists a constant C such that

h(n,c,d,r)≤ c−2r(d−1)
r(c− (r+1)(d−1))

n+C.

In particular, h(n,c,d,2)≤ c−4d+4
2(c−3d+3)n+C.

We see that Theorems 2.4.1 and 2.4.2 imply that if c is fixed, then h(n,c,d,2)
is determined up to a constant additive term. The theorems also show that h(n,c,d,2)
transitions from a constant to a value linear in n when c increases from 4d−4 to 4d−3.

To see Theorem 2.4.1(b), it suffices to construct a 2-coloured, 4(d− 1)-regular graph
on n vertices (for n sufficiently large), with no monochromatic subgraph having minimum
degree at least d and on more than d2−d +1 vertices. Caro and Yuster gave the following
construction.

Construction 2.4.3 Let c = 4(d−1) and n be sufficiently large. We first create a specific
graph H on n vertices. Let the vertices be v1, . . . ,vn and connect two vertices vi and v j if
and only if |i− j| ≤ d−1. Hence, all the vertices vd , . . . ,vn−d+1 have degree 2(d−1), and
the remaining 2(d−1) vertices have smaller degree. We add the following

(d
2

)
edges. For

all 1 ≤ i ≤ j ≤ d− 1, we add the edge viv jd+1. For example, if d = 3 we add v1v4,v1v7

and v2v7. Note that these added edges are indeed new edges. The resulting graph H has
n vertices and (d− 1)n edges. Furthermore, all the vertices have degree 2(d− 1), except
for v jd+1 whose degree is 2(d− 1)+ j, and vn−d+1+ j whose degree is 2(d− 1)− j, for
1≤ j≤ d−1. Now, note that the vertices of excess degree, namely vd+1,v2d+1, . . . ,vd2−d+1,
form an independent set. Hence, for n sufficiently large, there exists a 4(d− 1)-regular
graph with n vertices, and a 2-colouring of it, such that each monochromatic subgraph is
isomorphic to H. In the second copy, the vertex playing the role of v jd+1 plays the role of
the vertex vn−d+1+ j in the first copy, for 1≤ j ≤ d−1, and vice versa.

Observe that in the first copy of H, any subgraph with minimum degree at least d may
only contain the vertices v1, . . . ,vd2−d+1, and thus has order at most d2−d+1. This clearly
implies Theorem 2.4.1(b).

Theorem 2.4.2 trivially holds for d = 1. For d ≥ 2, Caro and Yuster provided the
following construction.

Construction 2.4.4 Let d,r≥ 2 and c> 2r(d−1). We construct an r-coloured graph with
n = r(m+ d) vertices and minimum degree at least c, where m is an arbitrary element of
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some fixed infinite arithmetic sequence whose difference and first element are only functions
of c,d and r. This r-coloured graph will have no monochromatic subgraph with minimum
degree at least d and more vertices than the value stated in Theorem 2.4.2, and this clearly
suffices for the theorem. Let m be a sufficiently large positive integer such that

y =
(r−1)(d−1)

c− (r+1)(d−1)
m

is an integer. Let A1, . . . ,Ar,B1, . . . ,Br be pairwise disjoint sets of vertices, with |Ai| = y
and |Bi| = m+ d− y for 1 ≤ i ≤ r. In each Bi, we place a graph with colour i, and with
minimum degree at least c− (r− 1)(d− 1). In each Ai, we place a (d− 1)-degenerate
graph with colour i, having precisely d vertices of degree d−1 and the rest are of degree
2(d− 1). It is easy to show that such a graph exists. Denote by A′i the y− d vertices of
Ai with degree 2(d− 1) and A′′i = Ai \A′i. Now for each j 6= i, we place a bipartite graph
with colour i, whose classes are Ai and A j∪B j. In this bipartite graph, the degree of all the
vertices of A j∪B j is d−1, the degrees of all the vertices of A′i are at least c−(r+1)(d−1)

r−1 , and

the degrees of all vertices of A′′i are at least c−r(d−1)
r−1 . This can be done for m sufficiently

large since

(y−d)
⌈

c− (r+1)(d−1)
r−1

⌉
+d
⌈

c− r(d−1)
r−1

⌉
≤ (d−1)(m+d).

For m sufficiently large, we can place all of these r(r− 1) bipartite graphs such that
their edge sets are pairwise disjoint (an immediate consequence of Hall’s Theorem).

In this construction, the minimum degree of the graph is at least c. Furthermore,
any monochromatic subgraph with minimum degree at least d must be completely placed
within some Bi. It follows that

h(n,c,d,r)≤ m+d− (r−1)(d−1)
c− (r+1)(d−1)

m =
c−2r(d−1)

r(c− (r+1)(d−1))
n+C.

Caro and Yuster also managed to determine h(n,c,d,2) whenever c is very close to n,
for n sufficiently large.

Theorem 2.4.5 (Caro, Yuster - 2003 [19]) Let c and d be positive integers. For n suffi-
ciently large, h(n,n− c,d,2) = n−2d− c+3.

To see the upper bound of Theorem 2.4.5 for large n, they gave the following
construction.
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Construction 2.4.6 Let A,A′,B be disjoint sets of vertices with |A| = |B| = 2d + c− 3
and |A′| = n− 2(2d + c− 3). Colour all edges within A∪A′ red, and all edges within B
and between A′ and B blue. Let A = {v1, . . . ,v2d+c−3} and B = {u1, . . . ,u2d+c−3}. For
1≤ i≤ 2d+c−3, colour the d−1 edges from ui to vi, . . . ,vi+d−2 blue, and the d−1 edges
to vi+d−1, . . . ,vi+2d−3 red, with the indices of the v j taken modulo 2d + c−3. There are no
other edges connecting A and B.

It is easy to verify that for n sufficiently large, this graph is (n−c)-regular, and contains
no monochromatic subgraph with minimum degree at least d and more than n−2d−c+3
vertices.

2.5 Specific trees

We recall the observation of Erdős and Rado: Every 2-coloured complete graph contains
a monochromatic spanning tree. We may extend this observation, by insisting that the
monochromatic subgraph is a specific type of tree. There are many results in this direction.
Bialostocki et al. proved the following.

Theorem 2.5.1 (Bialostocki, Dierker, Voxman - 1992 [12]) For every 2-colouring of Kn,
there exists a monchromatic spanning tree with height at most 2.

Theorem 2.5.2 (Bialostocki, Dierker, Voxman - 1992 [12]) For every 2-colouring of Kn,
there exists a monchromatic spanning subdivided star, whose centre has degree at most⌈ n−1

2

⌉
.

The same authors had also conjectured that every 2-coloured Kn contains a
monochromatic spanning broom (A broom is a path with a star at one end). This conjecture
was proved by Burr, but his proof was unfortunately unpublished. A proof of Burr’s result
can be found in the survey of Gyárfás [47].

Theorem 2.5.3 (Burr - 1992 [16]) For every 2-colouring of Kn, there exists a monchro-
matic spanning broom.

A double star is a graph obtained by connecting the centres of two vertex-disjoint stars
with an edge. Mubayi, and Liu et al. independently proved the following result, which is
an extension of Lemma 2.1.15.

Lemma 2.5.4 (Mubayi - 2002 [83]; Liu, Morris, Prince - 2004 [77]) Let r ≥ 1. For every
r-colouring of the complete bipartite graph Km,n, there exists a monochromatic double star
with at least m+n

r vertices.
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The sharpness of Lemma 2.5.4 can again be seen by the r-colouring of Km,n in

Construction 2.1.16. Inspired by the lemma, Gyárfás and Sárközy studied the analogous
problem of finding a monochromatic double star in an r-coloured complete graph. They
noticed the lemma implies that in any r-colouring of Kn, either all colour classes induce just
one component, or there is a monochromatic double star with at least n

r−1 vertices. They
also asked the following question, which is the analogue of Theorem 2.1.1 for double stars.

Question 2.5.5 (Gyárfás and Sárközy - 2008 [53]) Let r ≥ 3. For every r-colouring of Kn,
is it true that there exists a monochromatic double star on at least n

r−1 vertices?

They managed to prove the following weaker result.

Theorem 2.5.6 (Gyárfás and Sárközy - 2008 [53]) For r ≥ 2 and every r-colouring of Kn,
there exists a monochromatic double star on at least n(r+1)+r−1

r2 vertices.

For the case r = 2, Theorem 2.5.6 gives the existence of a monochromatic double star on
at least 3n+1

4 vertices in any 2-coloured Kn. By considering random graphs or Paley graphs,
one can obtain a 2-colouring of Kn where the monochromatic double star of maximum
order has 3n

4 +O(1) vertices. The random graphs construction was in fact shown implicitly
by Erdős, Faudree, Gyárfás and Schelp [25] (1989). Hence in Question 2.5.5, the constraint
r ≥ 3 is necessary.

2.6 Gallai colourings and extensions

In this subsection, we shall consider the task of finding monochromatic subgraphs in edge-
coloured complete graphs by putting a restriction on the edge-colouring. In [61], Gyárfás
and Simonyi defined a Gallai colouring to be an edge-colouring of a graph where
no triangle is coloured with three distinct colours. This model of colouring dates
back to Gallai’s paper [42] (1967), where he studied transitively orientable graphs,
and the paper was subsequently translated into English by Maffray and Preissmann
[81]. Gallai colourings have since been studied (directly or indirectly) by many authors.
Notably, Cameron, Edmonds and Lovász [17, 18, 79] encountered these colourings,
when they extended the perfect graph theorem. Also, Körner, Simonyi and Tuza [70,
71] called such an edge-colouring a Gallai partition, and they found the colourings to be
relevant in an information theoretic function called the graph entropy. Finally, Gyárfás
et al. [58] introduced the Gallai-Ramsey number, which is the analogue of the classical
Ramsey number, but restricted to Gallai colourings.

Gallai colourings generalise 2-colourings, and these two types of edge-colourings are
very closely related. Indeed, a flagship result is the following decomposition theorem,
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which Gallai [42], and Cameron and Edmonds [17] used implicitly, and was properly
restated by Gyárfás and Simonyi [61].

Theorem 2.6.1 (Gallai - 1967 [42]) Any Gallai colouring on a complete graph can be
obtained by substituting complete graphs with Gallai colourings for the vertices of a 2-
coloured complete graph on at least two vertices.

That is, given a complete graph K with a Gallai colouring, the following is true. There
exists a partition of the vertices of K into sets V1, . . . ,Vp (for some p ≥ 2) such that, the
edges within every Vi form a Gallai colouring, and for every 1 ≤ i 6= j ≤ p, all edges of
(Vi,Vj) have the same colour and can be one of only two possible colours. Such a
decomposition is called a Gallai decomposition of K, and the Gallai coloured complete
graphs on V1, . . . ,Vp are the blocks of the Gallai decomposition. Also, the 2-coloured
complete graph on p vertices, say v1, . . . ,vp, with viv j given the colour of (Vi,Vj) for all
1≤ i 6= j ≤ p, is the base graph of the decomposition.

The following result also appeared in [42]. Gyárfás and Simonyi stated the result
explicitly in [61], and noted that Theorem 2.6.1 follows from it.

Theorem 2.6.2 (Gallai - 1967 [42]) Every Gallai colouring with at least three colours on
a complete graph Kn has a colour which induces a disconnected subgraph on n vertices.

We see that Theorem 2.6.1 illustrates the close connection between Gallai colourings
and 2-colourings. The theorem is an important tool which can be used to show that, certain
results which hold for 2-colourings also hold for Gallai colourings. For instance, recall the
observation of Erdős and Rado: Every 2-coloured complete graph has a monochromatic
spanning tree. Now, given a Gallai colouring on a complete graph K, we may apply
Theorem 2.6.1 to obtain a Gallai decomposition for K, and then the observation on the base
graph, to obtain a monochromatic spanning tree for K. Thus, Erdős and Rado’s observation
extends to: Every Gallai coloured complete graph has a monochromatic spanning tree.

It turns out that some of the other results that we have already seen can also be extended,
including Theorems 2.5.1, 2.5.3, 2.3.2(a), 2.3.3, and Theorem 2.5.6 for r = 2.

Theorem 2.6.3 (Gyárfás, Simonyi - 2004 [61]) For every Gallai colouring of Kn, there
exists a monchromatic spanning tree with height at most 2.

Theorem 2.6.4 (Gyárfás, Simonyi - 2004 [61]) For every Gallai colouring of Kn, there
exists a monchromatic spanning broom.

Theorem 2.6.5 (Gyárfás, Sárközy, Sebő, Selkow - 2009 [58]) For every Gallai colouring
of Kn, there exists a monochromatic subgraph with diameter at most 2 on at least

⌈ 3n
4

⌉
vertices. This is best possible for every n.
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Theorem 2.6.6 (Gyárfás, Sárközy, Sebő, Selkow - 2009 [58]) For every Gallai colouring
of Kn, there exists a monochromatic spanning subgraph with diameter at most 3.

Theorem 2.6.7 (Gyárfás, Sárközy, Sebő, Selkow - 2009 [58]) For every Gallai colouring
of Kn, there exists a monochromatic double star with at least 3n+1

4 vertices. This is
asymptotically best possible.

On the other hand, an example where such an extension does not apply is when we
want to find a large monochromatic star in an edge-coloured complete graph. Given a 2-
colouring of Kn, there is a monochromatic star on at least

⌈ n−1
2

⌉
+ 1 =

⌊ n
2

⌋
+ 1 vertices,

by considering the larger monochromatic star at any vertex. This bound is essentially best
possible, since in the 2-colouring of Kn consisting of two red cliques of orders

⌊ n
2

⌋
and⌈ n

2

⌉
, with the remaining edges blue, the monochromatic star with maximum order has⌈ n

2

⌉
+ 1 vertices. With a little more effort, it is not hard to show that we can always find

a monochromatic star on
⌊ n

2

⌋
+ 1 vertices if n 6≡ 3 (mod 4), and

⌈ n
2

⌉
+ 1 vertices if n ≡ 3

(mod 4), with each value the best possible. However, we have the following result for
Gallai colourings.

Theorem 2.6.8 (Gyárfás, Simonyi - 2004 [61]) For every Gallai colouring of Kn, there
exists a monochromatic star with at least 2n

5 vertices. This bound is sharp.

The sharpness in Theorem 2.6.8 can be seen from the following Gallai colouring of Kn.
Partition the vertices of Kn into five near-equal sets V1, . . . ,V5. Colour all edges of (Vi,Vi+1)

with colour 1, those of (Vi,Vi+2) with colour 2, and those inside the classes Vi with colour 3
(for all 1≤ i≤ 5, with indices taken modulo 5). Then, the monochromatic star of maximum
order has

⌈ 2n
5

⌉
+1 vertices.

To generalise the concept of Gallai colourings, we may replace the role of the forbidden
3-coloured triangle. An edge-colouring of a graph F is rainbow if the colours of the edges
of F are distinct. Then, we may consider edge-colourings of complete graphs where
a rainbow coloured copy of a fixed graph F is forbidden. We shall call such an edge-
colouring rainbow F-free.

In this direction, Fujita and Magnant considered graphs F that are close to a triangle.
For s, t ≥ 0, let Hs,t be the graph obtained by taking a triangle, s single edges and t copies
of P2 (the path of length 2), and identifying one vertex of the triangle, say v, with one end-
vertex of each single edge and each P2. The vertex v is the centre of Hs,t . Note that the s
single edges are pendant edges of Hs,t (recall that a pendant edge of a graph F is an edge
that has an end-vertex with degree 1 in F).

Fujita and Magnant considered analogues of Theorem 2.6.1 with rainbow Hs,0-free
colourings. For s = 1, they proved the following result, which shows that in a rainbow
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H1,0-free colouring, one cannot hope to have a decomposition as strong as a Gallai
decomposition.

Theorem 2.6.9 (Fujita, Magnant - 2012 [37]) For every rainbow H1,0-free colouring of a
complete graph K, one of the following holds.

(i) V (K) can be partitioned such that there are at most two colours on the edges between
the parts.

(ii) There are three (different coloured) monochromatic spanning trees of K, and
moreover, there exists a partition of V (K) with exactly three colours on edges
between parts and between each pair of parts, the edges have only one colour.

For s ≥ 2, they also proved the following decomposition type result for Hs,0-free
colourings. The decomposition is slightly weaker than the decomposition when s = 1 but
it is still the best possible.

Theorem 2.6.10 (Fujita, Magnant - 2012 [37]) For s ≥ 2, in any rainbow Hs,0-free
colouring of a complete graph K, there exists a partition of V (K) such that between the
parts, there are at most s+ 2 colours. Furthermore, there exists an edge-colouring of a
complete graph such that for every partition of the vertices, there are s+2 colours between
the parts.

Next, Fujita et al. considered extending Theorem 2.6.2. A graph F is said to have
the disconnection property if there exists an integer r0 = r0(F) such that the following is
true: For every complete graph Kn whose edges are coloured with at least r0 colours and
without a rainbow copy of F , there exists a colour which spans a disconnected subgraph
on n vertices. Notice that r0(F)≥ |E(F)|, since for every sufficiently large complete graph
K and every r ≤ |E(F)| − 1, there exists an r-colouring of K where every colour spans a
connected subgraph, and such an r-colouring does not contain a rainbow copy of F . If it is
possible to take r0(F) = |E(F)|, then F is said to have the Gallai property.

Let DP and GP denote, respectively, the family of graphs that have the disconnection
property and the Gallai property. Note that we have the following.

• GP⊂ DP.

• If F ′ is a subgraph of F and F ∈ DP, then F ′ ∈ DP.

Combining Theorems 2.6.2, 2.6.9 and 2.6.10, we have Hs,0 ∈GP for all s≥ 0. Fujita et
al. proved several results, which we summarise as follows.
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Theorem 2.6.11 (Fujita, Gyárfás, Magnant, Seress - 2013 [34])

(a) Let P̀ denote the path of length `. Then P2,P3,P4,P5 ∈ GP.

(b) Let C` denote the cycle of length `. Then C2h 6∈ GP for every h≥ 1.

(c) If F ∈DP is connected and bipartite, then F is either a tree, or a unicyclic graph, or
two such components joined by an edge.

(d) For any F ∈ DP, there exists an edge e ∈ E(F) such that F− e is bipartite.

(e) If F ∈ DP is connected, then F can be obtained from a tree by adding at most two
edges.

(f) If F is a unicyclic graph such that its cycle is a triangle, then F ∈ DP. Hence, any
forest belongs to DP.

(g) Hs,1 ∈ GP for all s≥ 0.

(h) H+
s,0 ∈ GP for all s ≥ 0, where H+

s,0 is obtained from Hs,0 by adding a pendant edge
to Hs,0 at a vertex of the triangle, different from the centre. H2+

1,0 ∈GP, where H2+
1,0 is

a triangle with three pendant edges added, one at each vertex of the triangle.

To see part (b), Fujita et al. presented the following construction.

Construction 2.6.12 Let A,B be disjoint sets with |A| = |B| = 2(r− 1)q + 1. Let A =⋃r−1
i=1 Ai ∪{a} and B =

⋃r−1
i=1 Bi ∪{b}, where the sets are all disjoint and |Ai| = |Bi| = 2q.

The edge ab and the edges within A and B are given colour r. For i = 1,2, . . . ,r− 1, the
edges between a and Bi; b and Ai; and Ai and Bi, are given colour i. Split each Ai, Bi

into two disjoint equal parts, Ai = Xi ∪Yi, Bi = Ui ∪Wi (with q vertices in each). For any
i 6= j ∈ {1,2, . . . ,r− 1}, the edges between Xi and U j; and Yi and Wj, are given colour i;
the edges between Xi and Wj; and Yi and U j are given colour j. This colours all edges of
the complete graph on A∪B.

By taking r = 2h, Fujita et al. showed that the r-colouring in Construction 2.6.12 is
rainbow C2h-free, and every colour induces a connected subgraph.

In light of their findings, Fujita et al. also stated the following problems. The first
is in response to Theorem 2.6.11(a), the second in response to Theorem 2.6.11(a) and
Construction 2.6.12, and the fifth in response to Theorem 2.6.11(g).

Problem 2.6.13 (Fujita, Gyárfás, Magnant, Seress - 2013 [34])

(a) Are all paths in GP?
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(b) Is C4 ∈ DP?

(c) Are odd cycles in GP? Or in DP?

(d) Do we have GP = DP?

(e) Is Hs,t ∈ GP for all s, t ≥ 0?

Finally, Fujita and Magnant proved the following result about the existence of
monochromatic k-connected subgraphs in Gallai colourings.

Theorem 2.6.14 (Fujita, Magnant - 2013 [38]) Let r≥ 3 and k≥ 2. If n≥ (r+11)(k−1)+
7k logk, then for every Gallai colouring of Kn using r colours, there exists a monochromatic
k-connected subgraph on at least n− r(k−1) vertices.

Theorem 2.6.14 can be seen as an extension of Theorem 2.1.7. It also illustrates the
striking difference that the Gallai colouring condition imposes. If we consider r and k to be
fixed, then Theorem 2.6.14 gives, in a Gallai coloured Kn, the existence of a monochromatic
k-connected subgraph on n−O(1) vertices, i.e. nearly all vertices of Kn. But Theorem
2.1.8(b) (hence Construction 2.1.9) implies that we cannot have more than n

r′−1 +O(1)
vertices for such a subgraph in an r-coloured Kn, where r′ ≤ r is the largest integer such
that r′−1 is a prime power.

We end this subsection with the following two results, where rainbow coloured paths
are avoided in edge-coloured complete graphs.

Theorem 2.6.15 (Thomason, Wagner - 2007 [95]) Let r ≥ 4 and k ≥ 1. If n ≥ 2k, then
every rainbow P4-free r-colouring of Kn contains a monochromatic k-connected subgraph
on at least n− k+1 vertices (where P4 denotes the path of length 4).

Theorem 2.6.16 (Fujita, Magnant - 2013 [38]) Let r ≥ max{ k
2 +8,15} and k ≥ 1. If n ≥

(r+11)(k−1)+7k logk+2r+3, then every rainbow P5-free r-colouring of Kn contains a
monochromatic k-connected subgraph on at least n−7k+2 vertices (where P5 denotes the
path of length 5).

2.7 Host graphs with given independence number

We give a brief review of some results of Gyárfás and Sárközy, concerning the existence
of monochromatic connected subgraphs in edge-coloured graphs with given independence
number.
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Theorem 2.7.1 (Gyárfás, Sárközy - 2010 [54]) Let G be a graph on n vertices and with
independence number α(G) = α. Then, for every 2-colouring of G, there exists a
monochromatic connected subgraph on at least

⌈ n
α

⌉
vertices. This result is sharp.

The sharpness in Theorem 2.7.1 can be easily seen by taking G to consist of α cliques of
near-equal orders, i.e. each clique has

⌊ n
α

⌋
or
⌈ n
α

⌉
vertices. Gyárfás and Sárközy remarked

that Theorem 2.7.1 can be extended to r-colourings, with α(r−1) in the role of α.
They also considered using Gallai colourings, and obtained the following result.

Theorem 2.7.2 (Gyárfás, Sárközy - 2010 [54]) Let G be a graph on n vertices and with
independence number α(G) = α. Then, for every Gallai colouring of G, there exists a
monochromatic connected subgraph on at least n

α2+α−1 vertices.

They noted that the bound of n
α2+α−1 in Theorem 2.7.2 is not far from the truth, and

provided Construction 2.7.3 below which shows that we cannot have more than (c logα)n
α2 for

the maximum order of a monochromatic connected subgraph (for some constant c). Hence,
the bound of

⌈ n
α

⌉
in Theorem 2.7.1 does not extend to Gallai colourings.

Construction 2.7.3 Consider a triangle-free graph G′ with α(G′) = α and with the
maximum number of vertices. That is, G′ has p=R(3,α+1)−1 vertices, where R(3,α+1)
is the Ramsey number of a triangle versus a Kα+1 clique. A famous result of Kim [68]
(1995) implies that p is almost quadratic, its order of magnitude is α2

logα . We give G′ an
edge-colouring where all edges have distinct colours. Now, we define an edge-coloured
graph G on n vertices, by substituting Gallai coloured cliques for the vertices of G′, with
the vertex sets of the cliques forming a near-equal partition of V (G).

Then, we have a Gallai colouring of G, and α(G) = α. Moreover, the monochromatic
connected subgraph of G with maximum order has at most 2

⌈ n
p

⌉
= (c logα)n

α2 vertices, where
c is a constant coming from Kim’s estimate of R(3,α+1).

Gyárfás and Sárközy thus posed the following problem.

Problem 2.7.4 (Gyárfás, Sárközy - 2010 [54]) Determine the function f (α), the largest
value such that for every Gallai coloured graph G on n vertices with independence number
α(G) = α, there exists a monochromatic connected subgraph on at least f (α)n vertices.

From Theorem 2.7.2 and Construction 2.7.3, we have

1
α2 +α−1

≤ f (α)≤ c logα
α2 .

For α= 2, Gyárfás and Sárközy gave the following construction.
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Construction 2.7.5 Consider the graph H8 on eight vertices which is the complement of
the Wagner graph, i.e. V (H8) = {v1, . . . ,v8} and E(H8) = {vivi±2,vivi±3 : 1≤ i≤ 8}, where
indices are taken modulo 8. Define the edge-colouring on H8 where for 1≤ i≤ 8, the edges
vivi+2 and vivi−3 have colour i. As before, define an edge-coloured graph G on n vertices,
by substituting Gallai coloured cliques for the vertices of H8, with the vertex sets of the
cliques forming a near-equal partition of V (G).

Then, we have a Gallai colouring of G, and α(G) = 2. Moreover, the monochromatic
connected subgraph of G with maximum order has at most 3

⌈ n
8

⌉
vertices. Hence, we have

the following.

Lemma 2.7.6 (Gyárfás, Sárközy - 2010 [54]) 1
5 ≤ f (2)≤ 3

8 .

Finally, the following result about the existence of a monochromatic double star in a
Gallai coloured graph was also proved.

Theorem 2.7.7 (Gyárfás, Sárközy - 2010 [54]) Let G be a graph on n vertices and with
independence number α(G) = α. Then, for every Gallai colouring of G, there exists a
monochromatic double star on at least n

α2+α−2/3 vertices.

3 Partitioning and Covering by Monochromatic Structures

We consider problems of the following form: Let F be some family of graphs. For example,
F may be the family of all cycles, or paths, or trees, etc. Whenever we have an r-colouring
of the edges of a graph G, how many monochromatic subgraphs do we need so that they
form a partition or a covering of the vertices of G, with each subgraph belonging to F?

Throughout this section, the empty graph (with no vertices), a single vertex and a single
edge will also be considered as cycles, of lengths 0, 1 and 2 respectively – they may be
considered to be “degenerate cycles”. In the case when F is the family of all cycles, we
define the cycle partition number (resp. cycle covering number) of an r-coloured graph G
to be the minimum integer m such that, for any r-colouring of the edges of G, the vertices
of G can be partitioned into (resp. covered by) at most m monochromatic cycles. We can
make similar definitions when F is the family of all paths, or the family of all trees, and
obtain the analogous terms path partition number, path covering number, tree partition
number, and tree covering number of an r-coloured graph G.

We shall survey many results and open problems, including those that concern these
partition and covering numbers, as well as when F is some other family of graphs. Most of
the research done have been towards the case when G is a complete graph.
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3.1 Partitioning and covering by cycles

In this subsection, we shall mainly consider the problems of partitioning and covering the
vertices of an r-coloured complete graph by monochromatic cycles (recall that we include
the degenerate cycles of lengths 0, 1 and 2). We will also consider analogous problems
with some other r-coloured host graphs.

We begin by considering the case for 2-coloured complete graphs. A long-standing
conjecture of Lehel (1979), which was first published by Ayel [6], is the following: For
every 2-colouring of Kn with red and blue, there exists a partition of the vertices into a
red cycle and a blue cycle. Ayel also proved the conjecture for some special types of
2-colourings of Kn.

In support of a positive solution, Gyárfás noted two results in his survey [45] that may
be considered as partial results. Furthermore, algorithms for producing these subgraphs
were provided.

Theorem 3.1.1 (Gerencsér, Gyárfás - 1967 [43, 45]) Every 2-colouring of Kn with red and
blue contains a Hamilton cycle that is either monochromatic, or is the union of a red path
and a blue path.

Theorem 3.1.2 (Gyárfás - 1983 [45]) For every 2-colouring of Kn with red and blue, the
vertices can be covered by one red cycle and one blue cycle such that, the two cycles have
at most one vertex in common.

Many partial results to Lehel’s conjecture were then proved. Łuczak, Rödl and
Szemerédi [80] (1998) proved that the conjecture holds for all sufficiently large n,
by making use of Szemerédi’s regularity lemma. The bound on n was later improved to
n ≥ 218000 by Allen [3] (2008), without using the regularity lemma. The conjecture was
finally settled by Bessy and Thomassé, who used an ingenious argument which involved
Theorems 3.1.1 and 3.1.2.

Theorem 3.1.3 (Bessy, Thomassé - 2010 [11]) For every 2-colouring of Kn with red and
blue, there exists a partition of the vertices into a red cycle and a blue cycle.

Recently, Schelp [92] suggested the strengthening of certain Ramsey type problems
from complete graphs to graphs of given minimum degree. Inspired by the problems in
[92], Balogh et al. made the following conjecture, which is a version of Lehel’s conjecture
and Theorem 3.1.3 with a minimum degree condition.

Conjecture 3.1.4 (Balogh, Barát, Gerbner, Gyárfás, Sárközy - 2014 [7]) Let G be a graph
on n vertices with δ(G)> 3n

4 . Then, for any 2-colouring of G with red and blue, there exists
a partition of the vertex set V (G) into a red cycle and a blue cycle.
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They provided the following example, which shows that the condition δ(G) ≥ 3n

4 is
sharp.

Construction 3.1.5 Consider the 2-colouring of the cycle C4 where the colours of the
edges alternate in red and blue. Now, let G be a 2-coloured graph on n vertices, obtained
by substituting arbitrarily 2-coloured cliques (with red and blue) for the vertices of the C4,
with the vertex sets of the cliques forming a near-equal partition of V (G).

Then in such a 2-coloured graph G, there is no partition of the vertex set V (G) into a
red cycle and a blue cycle, while the minimum degree is

⌊ 3n
4

⌋
−1.

Going one step further, Barát and Sárközy made the following stronger conjecture,
which replaces the minimum degree condition by an Ore type condition (i.e. a condition
with a lower bound on the degree sum of any two non-adjacent vertices in a graph).

Conjecture 3.1.6 (Barát, Sárközy - 2014 [8]) Let G be a graph on n vertices such that
for any two non-adjacent vertices x and y, we have deg(x)+ deg(y) > 3n

2 . Then, for any
2-colouring of G with red and blue, there exists a partition of the vertex set V (G) into a red
cycle and a blue cycle.

Again, Construction 3.1.5 shows that the Ore type condition in Conjecture 3.1.6 is
sharp, since in the construction, the value of deg(x) + deg(y) is

⌊ 3n
2

⌋
− 2 or

⌈ 3n
2

⌉
− 2,

for any two non-adjacent vertices x and y. Barát and Sárközy also managed to prove an
asymptotic version of the conjecture.

Theorem 3.1.7 (Barát, Sárközy - 2014 [8]) For all η > 0, there exists n0 = n0(η) such that
the following holds. Let G be a graph on n≥ n0 vertices such that for any two non-adjacent
vertices x and y, we have deg(x)+ deg(y) ≥ ( 3

2 + η)n. Then, for every 2-colouring of G
with red and blue, there exist a red cycle and a blue cycle which are vertex-disjoint, and
together they cover at least (1−η)n vertices of G.

Theorem 3.1.7 improved an earlier result of Balogh et al. [7], which had the minimum
degree condition δ(G)> ( 3

4 +η)n in place of the Ore type condition.
Next, we consider the analogous situation when r ≥ 2 colours are used to colour Kn.

Erdős et al. proved the following result.

Theorem 3.1.8 (Erdős, Gyárfás, Pyber - 1991 [27]) Let r ≥ 2. For every r-colouring of
Kn, there exists a partition of the vertices into at most cr2 logr monochromatic cycles (for
some constant c).
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A notable fact about Theorem 3.1.8 is that the number of monochromatic cycles

depends only on r, and not on n. Thus, we may simply call the minimum number of
monochromatic cycles the cycle partition number, and denote it by p(r). The function
p(r) is the same for every complete graph Kn, irrespective of the value of n. We have
p(r)≤ cr2 logr.

Erdős et al. [27] conjectured that p(r) = r. We remark that in this conjecture, the
monochromatic cycles do not necessarily have all r distinct colours, and hence strictly
speaking, it is not quite a generalisation of Lehel’s conjecture (which asked for a partition
of a 2-coloured complete graph into two cycles with distinct colours). Erdős et al. noted
that their conjecture is best possible, as the following example shows.

Construction 3.1.9 Partition the vertices of a large complete graph into A1, . . . ,Ar, where
the sequence |Ai| grows fast enough. For u ∈ Ai, v ∈ A j where 1 ≤ i ≤ j ≤ r, colour the
edge uv with colour i.

Then in this example, the vertices of the complete graph cannot even be covered by
fewer than r monochromatic paths.

By using Szemerédi’s regularity lemma, Gyárfás et al. improved the bound in Theorem
3.1.8, for all sufficiently large complete graphs.

Theorem 3.1.10 (Gyárfás, Ruszinkó, Sárközy, Szemerédi - 2006 [51]) For r ≥ 2, there
exists n0 = n0(r) such that, for all n ≥ n0 and every r-colouring of Kn, the vertices can be
partitioned into at most 100r logr monochromatic cycles.

Later, the same authors, again using the regularity lemma, proved the following partial
results for 3-colourings.

Theorem 3.1.11 (Gyárfás, Ruszinkó, Sárközy, Szemerédi - 2011 [52]) In every 3-colouring
of Kn, all but o(n) of the vertices can be partitioned into three monochromatic cycles.

Theorem 3.1.12 (Gyárfás, Ruszinkó, Sárközy, Szemerédi - 2011 [52]) There exists n0

such that, for all n ≥ n0 and every 3-colouring of Kn, the vertices can be partitioned into
at most 17 monochromatic cycles.

Gyárfás et al. noted that Theorem 3.1.11 fails if we insist that the monochromatic
cycles must have distinct colours, by considering the r-colouring ψ on Kn with r = 3 in
Construction 2.1.2, but with all edges within the four classes having the same colour. In
this 3-colouring, at most 3

4 of the vertices can be covered by three vertex-disjoint cycles
having different colours. They also proved the following result, which shows that this
example is essentially best possible.
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Theorem 3.1.13 (Gyárfás, Ruszinkó, Sárközy, Szemerédi - 2011 [52]) In every 3-
colouring of Kn, at least ( 3

4 −o(1))n vertices can be partitioned into three monochromatic
cycles having distinct colours.

A breakthrough for Erdős et al.’s conjecture was finally made by Pokrovskiy, who
surprisingly managed to disprove it for all r ≥ 3.

Theorem 3.1.14 (Pokrovskiy - 2014 [84]) For r≥ 3, there exist infinitely many r-coloured
complete graphs whose vertices cannot be partitioned into r monochromatic cycles.

Pokrovskiy’s construction for Theorem 3.1.14 is inductive in r, and is as follows.

Construction 3.1.15 Let m ≥ 1 be an integer. First, partition the vertex set of K43m into
four classes A1,A2,A3,A4, with |A1| = 10m, |A2| = |A4| = 13m, and |A3| = 7m. Colour
the edges of (A1,A2) and (A3,A4) with colour 1; those of (A1,A3), (A2,A4), and within A3

and A4 with colour 2; and those of (A1,A4), (A2,A3), and within A1 and A2 with colour 3.
Denote this 3-coloured complete graph by Hm

3 .
Now, let r ≥ 4. We obtain the r-coloured complete graph Hm

r from the (r−1)-coloured
complete graph H5m

r−1, by taking a copy of H5m
r−1 and a further 2m vertices, and giving all

the new edges colour r. Note that Hm
r is an r-coloured complete graph on |V (H5m

r−1)|+2m
vertices. For every fixed r ≥ 3, we have now defined a sequence of r-coloured complete
grpahs Hm

r .
Finally, we obtain the r-coloured complete graph Jm

r from Hm
r , by taking a copy of Hm

r

and a further r vertices v1, . . . ,vr. Then, all edges from vi to Hm
r (1 ≤ i ≤ r) are given

colour i, the edge v1v2 is given colour 3, all edges v1v j ( j ≥ 3) are given colour 2, and all
remaining edges viv j (2≤ i< j) are given colour 1. Note that Jm

r is an r-coloured complete
graph on |V (Hm

r )|+ r vertices.

For fixed r ≥ 3, Pokrovskiy proved that every r-coloured complete graph Jm
r satisfies

Theorem 3.1.14. He noted that in all of his examples of r-colourings of Kn, it is possible
to cover n− 1 of the vertices of Kn with r vertex-disjoint monochromatic cycles. He also
remarked that Construction 3.1.15 can be generalised to work for all n ≥ n0, where n0 =

n0(r), by essentially replacing “m is an integer” with “m is a real number”. Thus, this
strengthens Theorem 3.1.14 to that it holds for all sufficiently large n.

Pokrovskiy then offered the following weaker versions of Erdős et al.’s original
conjecture. The first is a relaxation that the vertex-disjoint monochromatic cycles cover
all but a constant number of vertices of Kn. The second removes the constraint that the
monochromatic cycles covering Kn are vertex-disjoint.

International Journal of Graph Theory and its Applications 1 (2015) 3–56



Monochromatic Structures in Graphs and Hypergraphs - A survey 31
Conjecture 3.1.16 (Pokrovskiy - 2014 [84]) For each r ≥ 3, there exists a constant c =

c(r) such that in every r-colouring of Kn, there are r vertex-disjoint monochromatic cycles
covering n− c vertices of Kn.

Conjecture 3.1.17 (Pokrovskiy - 2014 [84]) For r ≥ 3 and every r-colouring of Kn, there
are r monochromatic cycles (not necessarily disjoint) covering all vertices of Kn. That is,
the cycle covering number of an r-coloured Kn is r.

Again, if Conjecture 3.1.17 is true, then it is optimal, in view of Construction 3.1.9.
Next, we consider the analogous problem when the r-coloured host graph is a balanced

complete bipartite graph Kn,n. Observing from Theorem 3.1.8 that the cycle partition
number of Kn depends only on r, Erdős et al. asked if the same is true for Kn,n.

Question 3.1.18 (Erdős, Gyárfás, Pyber - 1991 [27]) Does the cycle partition number of
an r-coloured balanced complete bipartite graph Kn,n depend only on r (and not on n)?

Erdős et al. also remarked that, by using a lemma in [27], it can be shown that the
vertices of any r-coloured Kn,n can be covered by at most cr2 (not necessarily disjoint)
monochromatic cycles (for some constant c).

By considering the concept of “uniformity” in bipartite graphs, Haxell gave a positive
answer to Question 3.1.18 for large r.

Theorem 3.1.19 (Haxell - 1997 [64]) The cycle partition number of an r-coloured
balanced complete bipartite graph Kn,n is O((r logr)2), for r sufficiently large.

We end this subsection with a generalisation due to Sárközy, where the host graph G has
a given independence number α. Similar to Theorem 3.1.8, Sárközy managed to prove an
upper bound for the cycle partition number of such a graph G whose edges are r-coloured,
with the upper bound depending only on r and α.

Theorem 3.1.20 (Sárközy - 2011 [87]) Let G be a graph with independence number
α(G) = α. Then, for every r-colouring of G, the vertices of G can be partitioned into at
most 25(αr)2 log(αr) monochromatic cycles.

Hence, we can define p(r,α) to be the minimum number of monochromatic cycles
needed to partition the vertex set of any r-coloured graph G with α(G) = α. The
function p(r,α) is a generalisation of the cycle partition number p(r). We have p(r,α) ≤
25(αr)2 log(αr). Sárközy also made the conjecture in [87] that p(r,α) = αr for every
r,α≥ 1, which generalises the conjecture of Erdős et al. that p(r)= r. Sárközy’s conjecture,
if true, is easily seen to be optimal, by considering a graph consisting of α sufficiently large
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cliques, with each given an r-colouring as described in Construction 3.1.9. We see that the
conjecture is true for r = 2 and α = 1 (Theorem 3.1.3 of Bessy and Thomassé), but false
for r ≥ 3 and α≥ 1, since we can take a graph with α cliques, where each one is given the
r-colouring of Construction 3.1.15 provided by Pokrovskiy. The conjecture is also known
to be true for r = 1 and every α≥ 1, which is the following result of Pósa.

Theorem 3.1.21 (Pósa - 1963 [85]) The vertices of a graph G can be partitioned into at
most α(G) cycles.

Hence, the remaining open case is r = 2 and α≥ 2, which we state below.

Conjecture 3.1.22 (Sárközy - 2011 [87]) For every α≥ 2, we have p(2,α) = 2α.

For Sárközy’s original conjecture, Balogh et al. suggested that the following weaker
version may be true. It is a stronger version of Conjecture 3.1.16 by Pokrovskiy.

Conjecture 3.1.23 (Balogh, Barát, Gerbner, Gyárfás, Sárközy - 2014 [7]) Let r,α ≥ 1.
Then there exists a constant c = c(r,α) such that, for every r-colouring of a graph G on n
vertices with independence number α(G) = α, there are αr vertex-disjoint monochromatic
cycles covering at least n− c vertices of G.

Pokrovskiy’s example implies that c≥ α must be true. Balogh et al. managed to prove
the following asymptotic version for r = 2 and every α≥ 1.

Theorem 3.1.24 (Balogh, Barát, Gerbner, Gyárfás, Sárközy - 2014 [7]) For all η > 0
and integers α ≥ 1, there exists n0 = n0(η,α) such that the following holds. For every
2-colouring of a graph G on n ≥ n0 vertices with independence number α(G) = α, there
are at most 2α vertex-disjoint monochromatic cycles covering at least (1−η)n vertices of
G.

3.2 Partitioning and covering by paths or trees

We now consider the analogous problems of partitioning and covering r-coloured graphs
by monochromatic paths or trees. By Theorem 3.1.8, the path partition, path covering, tree
partition, and tree covering numbers of an r-coloured Kn all depend only on r, and we may
simply call these functions the path partition number, the path covering number, the tree
partition number, and the tree covering number. By Construction 3.1.9, the path partition
and covering numbers are both at least r.

Gyárfás made the following conjectures about the path partition and covering numbers,
which are slightly weaker versions of Erdős et al.’s conjecture about the cycle partition
number. The second conjecture is a weaker version of Conjecture 3.1.17 by Pokrovskiy.
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Conjecture 3.2.1 (Gyárfás - 1989 [46]) The vertices of every r-coloured complete graph
Kn can be partitioned into r monochromatic paths. That is, the path partition number is r.

Conjecture 3.2.2 (Gyárfás - 1989 [46]) The vertices of every r-coloured complete graph
Kn can be covered by r monochromatic paths. That is, the path covering number is r.

He had also proved in [46] that the path covering number is a function of r (and not n),
and conjectured that the same is true for the path partition number. This is true by Erdős et
al.’s result (Theorem 3.1.8).

Rado had already proved a countably infinite version of Conjecture 3.2.1.

Theorem 3.2.3 (Rado - 1978 [86]) The vertices of every r-coloured countably infinite
complete graph can be partitioned into r monochromatic finite or one-way infinite paths.

The case r = 2 of Conjecture 3.2.1 (and Conjecture 3.2.2) is true, and is a result of
Gerencsér and Gyárfás (Theorem 3.1.1). More recently, Pokrovskiy settled the case r = 3.

Theorem 3.2.4 (Pokrovskiy - 2014 [84]) For every 3-colouring of Kn, the vertices can be
partitioned into three monochromatic paths.

In Pokrovskiy’s proof of Theorem 3.2.4, he splits into two cases: whether or not the
3-colouring of Kn is 4-partite. A 3-colouring of Kn is 4-partite if there is a partition of the
vertices of Kn into A1,A2,A3,A4 such that, all edges of (A1,A4) and (A2,A3) have colour
1; those of (A2,A4) and (A1,A3) have colour 2; and those of (A3,A4) and (A1,A2) have
colour 3. The remaining edges (within the classes) are arbitrarily coloured. Note that this
3-colouring has a similar structure to the edge-colouring ψ of Kn that was described in
Construction 2.1.2, in the case r = 3. The following result was proved, which strengthens
Theorem 3.2.4.

Theorem 3.2.5 (Pokrovskiy - 2014 [84]) Suppose that we have a 3-colouring of Kn.

(a) If the 3-colouring is not 4-partite, then the vertices of Kn can be partitioned into three
monochromatic paths with different colours.

(b) If the 3-colouring is 4-partite, then the vertices of Kn can be partitioned into
three monochromatic paths, at most two of which have the same colour.

Conjectures 3.2.1 and 3.2.2 remain open for r ≥ 4, and the best known upper bound for
both the path partition number and path covering number is 100r logr for all sufficiently
large n, the same as the one in Theorem 3.1.10 by Gyárfás et al.
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Now, we consider the path partition number of an r-coloured balanced complete

bipartite graph Kn,n. For the case r = 2, we say that a 2-colouring of Kn,n with red and blue
is split if the classes can be partitioned as X1∪X2 and Y1∪Y2 such that, X1,X2,Y1,Y2 6= /0; all
edges of (X1,Y1) and (X2,Y2) are red; and those of (X1,Y2) and (X2,Y1) are blue. Gyárfás
and Lehel proved the following result.

Theorem 3.2.6 (Gyárfás, Lehel - 1973 [45, 49]) Suppose that we have a 2-colouring of
Kn,n. If the 2-colouring is not split, then there exist two disjoint monochromatic paths with
different colours which cover all, except possibly one, of the vertices of Kn,n.

Pokrovskiy proved the following slight extension.

Theorem 3.2.7 (Pokrovskiy - 2014 [84]) Suppose that we have a 2-colouring of Kn,n.
There exists a partition of the vertices of Kn,n into two monochromatic paths with different
colours if and only if the 2-colouring is not split.

Pokrovskiy remarked that there are split 2-colourings of Kn,n which cannot be
partitioned into two monochromatic paths, even when we are allowed to repeat colours.
Indeed, any split 2-colouring with X1,X2,Y1,Y2 satisfying ||X1|−|Y1|| ≥ 2 and ||X1|−|Y2|| ≥
2 will have this property. Also, it is easy to see that every 2-coloured Kn,n which is split
can be partitioned into three monochromatic paths. Hence by Theorem 3.2.6 or 3.2.7, we
immediately have the following result.

Theorem 3.2.8 The path partition number of a 2-coloured balanced complete bipartite
graph Kn,n is 3.

For r-colourings of Kn,n, Pokrovskiy made the following conjecture.

Conjecture 3.2.9 (Pokrovskiy - 2014 [84]) The path partition number of an r-coloured
balanced complete bipartite graph Kn,n is 2r−1.

Pokrovskiy gave the following example of an r-colouring of Kn,n which shows that the
conjecture is optimal. Here, n = ∑

r
i=1(10i+ i). Let X and Y be the classes of Kn,n. Partition

X into X1, . . . ,Xr and Y into Y1, . . . ,Yr, where |Xi| = 10i + i and |Yi| = 10i + r+ 1− i. The
edges of (Xi,Yj) are coloured with colour i+ j (mod r). Then, it can be shown that this
r-coloured Kn,n cannot be partitioned into 2r−2 monochromatic paths.

The best known upper bound for the path partition number of an r-coloured Kn,n is again
O((r logr)2) for large r, due to Haxell (Theorem 3.1.19).

Next, we consider tree partition and covering numbers of r-coloured graphs. Recall that
when the r-coloured host graph is a complete graph Kn, then these two functions depend
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only on r. The case r = 2 is simply the observation of Erdős and Rado that every 2-coloured
Kn contains a monochromatic spanning tree, i.e. the tree partition and covering numbers of
a 2-coloured Kn are both 1.

For general r ≥ 2, it is obvious that the tree covering number is at most r, since the
monochromatic stars at any vertex of an r-coloured Kn form a good covering. Construction
2.1.2 implies that if r−1 is a prime power and n ≥ (r−1)2(r−2), then the tree partition
and covering numbers are both at least r− 1. Indeed, any monochromatic connected
subgraph in the r-colouring ψ of Kn has at most (r−1)

⌈ n
(r−1)2

⌉
< n

r−2 vertices, and hence
any partition or covering by monochromatic trees would require at least r−1 trees.

In view of these, Erdős et al. made the following conjecture.

Conjecture 3.2.10 (Erdős, Gyárfás, Pyber - 1991 [27]) For r ≥ 2, the tree partition
number is r−1.

In support of this conjecture, they managed to settle the case r = 3.

Theorem 3.2.11 (Erdős, Gyárfás, Pyber - 1991 [27]) The tree partition number of a 3-
coloured complete graph Kn is 2.

Haxell and Kohayakawa then came close to proving Conjecture 3.2.10 for large n.

Theorem 3.2.12 (Haxell, Kohayakawa - 1996 [65]) Let n≥ 3r4r!(1− 1
r )

3(1−r) logr, where
r≥ 1. Then, the vertices of an r-coloured complete graph Kn can be partitioned into at most
r monochromatic trees with distinct colours.

In [64], Haxell also remarked that the method in [65] shows that, the tree partition
number for an r-coloured balanced complete bipartite graph Kn,n is at most 2r, for n
sufficiently large with respect to r. Before that, Erdős et al. had remarked in [27] that cr2

is an upper bound (for some constant c).
Finally, Fujita et al. considered the tree partition number of an r-coloured graph G,

where G has given independence number. They proved the following result, which is an
extension of Theorem 2.7.1.

Theorem 3.2.13 (Fujita, Furuya, Gyárfás, Tóth - 2012 [32]) For any 2-colouring of a
graph G, the vertex set V (G) can be partitioned into at most α(G) monochromatic trees.

In fact, Fujita et al. proved a stronger version of Theorem 3.2.13 for hypergraphs, which
we will see in Section 4. They also proved the following result, which is a version using
Gallai colourings.
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Theorem 3.2.14 (Fujita, Furuya, Gyárfás, Tóth - 2012 [32]) For every integer α≥ 1 there
exists an integer g = g(α) such that the following holds. If G is a graph with α(G) = α

and G is given a Gallai colouring, then the vertex set V (G) can be partitioned into at most
g monochromatic trees.

Theorem 3.2.14 extends a result of Gyárfás, Simonyi and Tóth [62] (2012) that in any
Gallai colouring of a graph G, the number of monochromatic trees covering all the vertices
is bounded in terms of α(G).

Now, we consider the tree covering number of an r-coloured graph G. We have
Conjecture 3.2.15 below, which is an equivalent formulation of a long standing conjecture
of Ryser (1971). The conjecture appeared in the Ph.D. thesis of Henderson [66]. A stronger
form of the conjecture was also made independently by Lovász at around the same time.

Conjecture 3.2.15 (Ryser - 1971; Lovász - 1971, appeared in Henderson [66]) Let r ≥ 2.
Then, for any r-colouring of the edges of a graph G, the vertex set V (G) can be covered by
at most α(G)(r−1) monochromatic trees.

In particular, the tree covering number is r−1.

The sharpness of Conjecture 3.2.15 for graphs of sufficiently large order again follows
from Construction 2.1.2, if r− 1 is a prime power. Indeed, for graphs with independence
number α, we can take G to consist of α vertex-disjoint cliques, each with at least
(r− 1)2(r− 2) vertices, and give each clique the r-colouring ψ. Then as before, any
partitioning or covering of G by monochromatic trees would require at least α(r−1) trees.

Many partial results to the conjecture are known. The case r = 2 is equivalent to Kőnig’s
theorem. After partial results by Haxell [63], and Szemerédi and Tuza [94], the case r = 3
was solved by Aharoni [1], relying on an interesting topological method that he established
with Haxell in [2].

Theorem 3.2.16 (Aharoni - 2001 [1]) For any 3-colouring of a graph G, the vertex set
V (G) can be covered by at most 2α(G) monochromatic trees.

For the case α(G) = 1, i.e. for complete graphs, the cases r = 3,4,5 were proved,
respectively, by Gyárfás [44] (1977); Duchet [23] (1979) and Tuza [96] (1978); and Tuza
[96] (1978). Hence, we have the following result.

Theorem 3.2.17 For r = 2,3,4,5, the tree covering number is r−1.

All remaining cases of Conjecture 3.2.15 are still open.
We end this subsection by considering a bipartite version of the tree covering number,

discovered by Gyárfás and Lehel. For this, they made the following conjecture.
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Conjecture 3.2.18 (Gyárfás, Lehel - 1977 [44, 73]) Let r ≥ 2. Then, in every r-colouring
of a complete bipartite graph Km,n, the vertices can be covered by at most 2r− 2
monochromatic trees.

It is easy to see that the vertices of any r-coloured Km,n can be covered by at most
2r−1 monochromatic trees. Indeed, let u and v be two vertices in opposite classes of Km,n,
and take the monochromatic double star with centres u and v, along with the remaining
monochromatic stars centred at u and v (there are at most 2r−2 such stars).

On the other hand, Gyárfás [44] (see also Chen et al. [20]) provided the following
example of an r-coloured complete bipartite graph Km,n which requires at least 2r−2
monochromatic trees to cover the vertex set.

Construction 3.2.19 Let the classes of Km,n be A and B, where |A| = m = r− 1 and
|B| = n = r!. Label the vertices of A with {1, . . . ,r− 1} and those of B with the (r− 1)-
permutations of the elements of {1, . . . ,r}. For i ∈ A and π = j1 j2 · · · jr−1 ∈ B, let the
colour of the edge iπ be ji.

Since each vertex in B is incident with r− 1 edges of distinct colours, every
monochromatic tree is a star with (r− 1)! leaves centred in A. This means that there is
a vertex cover with 2r−2 monochromatic trees: just take the r monochromatic stars
centred at vertex r− 1, and add one edge from each vertex i = 1,2, . . . ,r− 2 of A.
Gyárfás [44] (see also Chen et al. [20]) showed that this particular 2-coloured Km,n cannot
be covered with less than 2r−2 monochromatic trees.

Hence, if Conjecture 3.2.18 is true, then it is best possible. In other words, the
conjecture claims that the tree covering number of an r-coloured Km,n is 2r− 2. Chen et
al. managed to prove the conjecture for small r.

Theorem 3.2.20 (Chen, Fujita, Gyárfás, Lehel, Tóth - 2012 [20]) Let r = 2,3,4,5. Then,
for every r-colouring of a complete bipartite graph Km,n, the vertex set can be covered by
at most 2r−2 monochromatic trees.

3.3 Partitioning by regular subgraphs

We consider the problem of partitioning an edge-coloured graph into monochromatic
connected d-regular subgraphs and single vertices, where d ≥ 2. This can be seen as a
generalisation of the problem of estimating the cycle partition number of an edge-coloured
graph, which is roughly the case d = 2, with degenerate cycles playing a minor role. We
note that it is important to allow the possibility of having single vertices in such a partition
(such vertices can be considered as degenerate d-regular graphs). For example, suppose
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that we have an edge-colouring of a graph G where there is a vertex v and a colour, say red,
such that an edge is red if and only if it is incident with v. Then, we will require v to occur
as a single vertex, in any partition of the vertex set V (G) into monochromatic connected
d-regular subgraphs and single vertices.

The generalisation from cycles to d-regular subgraphs was suggested by Servatius [93].
We define the d-regular partition number of an r-coloured graph G to be the minimum
integer m such that , for any r-colouring of the edges of G, the vertices of G can
be partitioned into at most m monochromatic connected d-regular subgraphs and single
vertices. Sárközy and Selkow were the first to prove a result, in the case where the edge-
coloured host graph is complete.

Theorem 3.3.1 (Sárközy, Selkow - 2000 [89]) There exists a constant c such that, for every
r,d ≥ 2 and any r-colouring of a complete graph Kn, the vertices can be partitioned into at
most rc(r logr+d) monochromatic connected d-regular subgraphs and single vertices.

Again, similar to the consequences of Theorems 3.1.8 and 3.1.20, the d-regular partition
number of an r-coloured Kn is independent of n. Using Szemerédi’s regularity lemma and
with the help of Theorem 2.2.5, Sárközy et al. then improved the bound on the d-regular
partition number in Theorem 3.3.1, for sufficiently large n.

Theorem 3.3.2 (Sárközy, Selkow, Song - 2013 [91]) Let r,d ≥ 2. Then, there exists n0 =

n0(r,d) such that, for all n ≥ n0 and every r-colouring of Kn, the vertex set of Kn can be
partitioned into at most 100r logr + 2rd monochromatic connected d-regular subgraphs
and single vertices.

Sárközy et al. [91] provided the following construction, which shows that the bound of
100r logr+2rd in Theorem 3.3.2 is close to being the best possible, especially if r is small
compared to d.

Construction 3.3.3 Let n > (r− 1)(d− 1). Let A1, . . . ,Ar−1 be disjoint vertex sets of Kn,
each with size d−1, and let Ar be the remaining vertices. Define an r-colouring on Kn as
follows. Assign colour 1 to all edges containing a vertex from A1. Then, assign colour 2
to all edges containing a vertex from A2 and not in colour 1. We continue in this fashion,
until we have assigned colour r− 1 to all edges containing a vertex from Ar−1 and not in
colour 1, . . . ,r−2. Finally, assign colour r to all the edges within Ar.

Then in this edge-colouring of Kn, it is not hard to show that in any partition of the
vertex set of Kn into monochromatic connected d-regular subgraphs and single vertices,
all vertices of A1∪ ·· ·∪Ar−1 must occur as single vertices. Hence, the d-regular partition
number of an r-coloured Kn is at least (r−1)(d−1)+1.
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Sárközy and Selkow also considered the d-regular partition number of an r-coloured

balanced complete bipartite graph Kn,n, and proved the following result.

Theorem 3.3.4 (Sárközy, Selkow - 2000 [89]) There exists a constant c such that, for every
r,d ≥ 2 and any r-colouring of a balanced complete bipartite graph Kn,n, the vertices can
be partitioned into at most rc(r logr+d) monochromatic connected d-regular subgraphs and
single vertices.

Finally, Sárközy et al. considered the situation when the host graph has fixed
independence number. They proved the following result, which contains Theorem 3.3.1.

Theorem 3.3.5 (Sárközy, Selkow, Song - 2011 [90]) There exists a constant c such that
the following holds. Let r,d ≥ 2, and G be a graph with independence number α(G) =

α. Then, for every r-colouring of G, the vertex set V (G) can be partitioned into at most
(αr)c(αr log(αr)+d) monochromatic connected d-regular subgraphs and single vertices.

A lower bound of α((r− 1)(d− 1)+ 1) for the corresponding d-regular partition
number can be easily seen, by considering the graph which consists of α cliques, each with
more than (r− 1)(d − 1) vertices, and given the r-colouring as defined in Construction
3.3.3. It would be desirable to improve the large gap between the two bounds. Sárközy et
al. suggested that the lower bound of α((r−1)(d−1)+1) may be closer to the truth.

4 Monochromatic Structures in Hypergraphs

In this section, we shall review problems that concern the existence of a monochromatic
subhypergraph in an edge-coloured hypergraph, as well as problems associated with
partitioning and covering of the host hypergraph by such subhypergraphs. These extend
the analogous situations for graphs, which we have already seen in Sections 2 and 3. As in
the case for graphs, we will consider situations where the monochromatic subhypergraphs
are cycles, paths, and connected hypergraphs. Throughout, all of our edge-coloured host
hypergraphs will be non-trivial and t-uniform, for some t ≥ 2, and hence such a t-uniform
host hypergraph has at least t vertices. For many problems, the host hypergraph is a t-
uniform complete hypergraph on n vertices, which we denote by Kt

n (with n≥ t).

4.1 Connected subhypergraphs and Berge cycles

We begin by recalling the most standard definitions of hypergraph paths, cycles, and
connected hypergraphs.
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A hypergraph P is a Berge path of length ` ≥ 0 if P consists of distinct vertices

v1, . . . ,v`+1 and distinct edges e1, . . . ,e` such that for 1 ≤ i ≤ `, we have vi,vi+1 ∈ ei.
Similarly, a hypergraph C is a Berge cycle of length ` ≥ 2 if C consists of distinct vertices
v1, . . . ,v`, called the core of C, and distinct edges e1, . . . ,e` such that for 1≤ i≤ `, we have
vi,vi+1 ∈ ei (with v`+1 = v1). Note that in both cases, any other incidences are permitted,
and for fixed `≥ 2, Berge paths and cycles are generally not unique, even when we restrict
to t-uniformity where t ≥ 3. Of course, the 2-uniform cases (with ` ≥ 3 for Berge cycles)
just reduce to simple paths and cycles.

A hypergraph H is connected if for any two vertices of H, there exists a Berge path in
H containing them. Equivalently, H is connected if the shadow graph GH, which is the
simple graph where V (GH) = V (H) and E(GH) = {xy : xy ⊂ e for some e ∈ E(H)}, is
connected.

The earliest appearances of these three definitions are possibly in the book of Berge
([10], Ch. 17). Here, we are interested in problems that concern the existence of
monochromatic copies of these hypergraphs in edge-coloured hypergraphs.

Our first aim is to consider the extension of Theorem 2.1.1 to hypergraphs. That is,
whenever we have an r-colouring of the edges of the t-uniform complete hypergraph Kt

n,
how large a monochromatic connected subhypergraph can we always find? Let h(n,r, t)
be the largest integer m such that, whenever we have an r-colouring of Kt

n, there is a
monochromatic connected subhypergraph with at least m vertices. Hence, we would like
to determine the function h(n,r, t). The case t = 2 is the case for simple graphs, which was
considered in Theorem 2.1.1. Füredi and Gyárfás extended Theorem 2.1.1 as follows.

Theorem 4.1.1 (Füredi, Gyárfás - 1991 [41]) In every r-colouring of the edges of Kt
n,

there is a monochromatic connected subhypergraph on at least n
q vertices, where q is the

smallest integer satisfying r ≤ 1+q+q2 + · · ·+qt−1. That is, we have h(n,r, t)≥ n
q .

Moreover, for fixed r,q, t, we have the sharp result of h(n,r, t) = n
q +O(1) if r = 1+q+

q2 + · · ·+qt−1 and q is a prime power, where an affine space of dimension t over the field
Fq exists.

We see that Theorem 4.1.1 implies that if 1≤ r≤ t, then q = 1, and hence h(n,r, t) = n.
That is, for 1≤ r ≤ t, every r-coloured Kt

n contains a monochromatic spanning connected
subhypergraph. This result had already been proved by Gyárfás [44] (1977).

To see the sharpness in Theorem 4.1.1, we have the following construction, which uses
the existence of affine spaces and is a generalisation of Construction 2.1.2.

Construction 4.1.2 Let t,q ≥ 2 and r ≥ 3 such that r = 1+q+q2 + · · ·+qt−1 and q is a
prime power. Consider the finite affine space AG(t,q) over the field Fq (see the appendix
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in Section 5). Let p1, . . . , pqt be the points and P1, . . . ,Pr be the parallel classes of
hyperplanes of AG(t,q). Now, take a near-equal partition of the vertex set of Kt

n into qt

classes V1, . . . ,Vqt . We define an r-colouring ψ on Kt
n as follows. Let e be an edge of Kt

n,
and e′ = {pi : 1 ≤ i ≤ qt , and there exists a vertex of e in the class Vi}. We let ψ(e) = `,
where 1 ≤ ` ≤ r is such that there is a hyperplane in P` containing all vertices of e′. In
particular, this means that the edges inside the classes V1, . . . ,Vqt are arbitrarily coloured.

Now, if r,q, t are fixed, then in the r-colouring ψ of Kt
n, every monochromatic connected

subhypergraph has at most qt−1
⌈ n

qt

⌉
< n

q +qt−1 = n
q +O(1) vertices.

Applying Theorem 4.1.1 with t = 3 and q = 1,2, we have h(n,3,3) = n and h(n,7,3) =
n
2 +O(1). Filling in the gap, Gyárfás [44] determined h(n,4,3), and Gyárfás and Haxell
[48] determined h(n,5,3) and h(n,6,3). These results are summarised as follows.

Theorem 4.1.3 (Gyárfás - 1977 [44]; Gyárfás, Haxell - 2009 [48])

(a) h(n,4,3) = 3n
4 +O(1).

(b) h(n,5,3) = 5n
7 +O(1).

(c) h(n,6,3) = 2n
3 +O(1).

In general, for fixed t, we see that for the values of r where sharpness is attained in
Theorem 4.1.1, the gaps are rather large. It would be desirable to attempt to fill in these
gaps.

Next, we consider the problem of finding large monochromatic Berge cycles in edge-
coloured complete hypergraphs. We have already considered the case for graphs in
Subsection 2.2. We say that a Berge cycle C in a hypergraph H on n vertices is Hamiltonian
if C has length n. Then, a question we may ask is: What conditions on an edge-coloured
t-uniform complete hypergraph Kt

n will guarantee the existence of a monochromatic
Hamiltonian Berge cycle?

We see that in the case for simple graphs (t = 2), there is little to consider, since
the construction after Theorem 2.2.1 shows that in a 2-colouring of Kn, we cannot
be guaranteed to have a monochromatic cycle with length greater than

⌈ 2n
3

⌉
. In the

hypergraphs setting, Gyárfás et al. made the following conjecture.

Conjecture 4.1.4 (Gyárfás, Lehel, Sárközy, Schelp - 2008 [50]) Let t ≥ 2 be fixed and
n be sufficiently large. Then, every (t − 1)-colouring of Kt

n contains a monochromatic
Hamiltonian Berge cycle.

We have the following results, showing that the conjecture is solved for t = 3, and very
nearly solved for t = 4.
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Theorem 4.1.5 (Gyárfás, Lehel, Sárközy, Schelp - 2008 [50]) Let n ≥ 5. Then, every
2-colouring of K3

n contains a monochromatic Hamiltonian Berge cycle.

Theorem 4.1.6 (Gyárfás, Sárközy, Szemerédi - 2010 [60]) Let n ≥ 140. Then, every 3-
colouring of K4

n contains a monochromatic Berge cycle of length at least n−10.

Theorem 4.1.6 improved an earlier result of Gyárfás et al. [50], which was stated in
asymptotic form. For general t, we have the following partial results to Conjecture 4.1.4.
In the first result, the number of colours used to colour Kt

n is much less than t − 1. The
second result is an asymptotic version of the conjecture, where the number of colours used
is at most t−blog2 tc.

Theorem 4.1.7 (Gyárfás, Lehel, Sárközy, Schelp - 2008 [50]) Let t ≥ 4 be fixed and n
be sufficiently large. Then, every

⌊ t−1
2

⌋
-colouring of Kt

n contains a monochromatic
Hamiltonian Berge cycle.

Theorem 4.1.8 (Gyárfás, Lehel, Sárközy, Schelp - 2008 [50]) For all η > 0 and integers
t,r≥ 2 with t ≥ r+ log2(r+1), there exists n0 = n0(η, t,r) such that for every n≥ n0, every
r-colouring of Kt

n contains a monochromatic Berge cycle of length at least (1−η)n.

Gyárfás et al. [50] also noted that the number of colours, t − 1, cannot be increased
in Conjecture 4.1.4. They pointed out that Gyárfás and Sárközy [55], who considered
the situation when t colours are used, gave an example of a t-colouring of Kt

n where the
maximum length of a monochromatic Berge cycle is at most

⌈ (2t−2)n
2t−1

⌉
. This example will

be presented in Construction 4.1.12 in a more general form. Gyárfás and Sárközy made the
following conjecture, which claims that the value of

⌈ (2t−2)n
2t−1

⌉
is essentially best possible.

Conjecture 4.1.9 (Gyárfás, Sárközy - 2011 [55]) For all η > 0 and integer t ≥ 2, there
exists n0 = n0(η, t) such that for every n ≥ n0, every t-colouring of Kt

n contains a
monochromatic Berge cycle of length at least ( 2t−2

2t−1 −η)n.

We see that the case for graphs (t = 2) was solved by Faudree et al. (Theorem 2.2.1).
Gyárfás and Sárközy managed to settle the case t = 3.

Theorem 4.1.10 (Gyárfás, Sárközy - 2011 [55]) For all η > 0, there exists n0 = n0(η) such
that for every n ≥ n0, every 3-colouring of K3

n contains a monochromatic Berge cycle of
length at least ( 4

5 −η)n.

Dorbec et al. considered a generalisation, by imposing a restriction on the Berge cycles.
They introduced the notion of s-tight Berge cycles, as follows. For s ≥ 2, a Berge cycle
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is s-tight if it has core v1, . . . ,v` and distinct edges e1, . . . ,e` such that, for all 1 ≤ i ≤ `,
we have vi,vi+1, . . . ,vi+s−1 ∈ ei (with indices taken modulo `). Hence, the case s = 2
reduces to ordinary Berge cycles. Dorbec et al. made the following conjecture, which is a
generalisation of Conjecture 4.1.4.

Conjecture 4.1.11 (Dorbec, Gravier, Sárközy - 2008 [22]) Let 2 ≤ r,s ≤ t be fixed such
that r + s ≤ t + 1, and n be sufficiently large. Then, every r-colouring of Kt

n contains a
monochromatic Hamiltonian s-tight Berge cycle.

Dorbec et al. noted that if the conjecture is true, then it is best possible. They provided
Construction 4.1.12 below, which Gyárfás and Sárközy [55] also presented for s = 2 and
r = t. The construction shows that if 2 ≤ r,s ≤ t and r + s > t + 1, then there is an r-
colouring of Kt

n where, the maximum length of a monochromatic s-tight Berge cycle is at
most

⌈ s(r−1)n
s(r−1)+1

⌉
. Hence for Berge cycles (s = 2) and r = t, this value, obtained by Gyárfás

and Sárközy, becomes
⌈ (2t−2)n

2t−1

⌉
.

Construction 4.1.12 Let 2 ≤ r,s ≤ t and r+ s > t +1. Let A1, . . . ,Ar−1 be disjoint vertex
sets from Kt

n, each of size
⌊ n

s(r−1)+1

⌋
. The t-edges not containing a vertex from A1 are

given colour 1. The t-edges that are not coloured yet and do not contain a vertex from A2

are given colour 2. Continuing in this fashion, the t-edges that are not coloured yet with
colours 1, . . . ,r−2 and do not contain a vertex from Ar−1 are given colour r−1. Finally,
the t-edges that contain a vertex from all r−1 sets A1, . . . ,Ar−1 are given colour r.

Then in this r-colouring of Kt
n, an s-tight Berge cycle in colour i for 1 ≤ i ≤ r− 1

has length at most
⌈ s(r−1)n

s(r−1)+1

⌉
, since the subhypergraph induced by the edges in colour i

leaves out Ai (a set of size
⌊ n

s(r−1)+1

⌋
) completely. Also, note that for any s (> t− r+ 1)

consecutive vertices in the core of an s-tight Berge cycle in colour r (if such a cycle exists),
at least one vertex lies in A1∪·· ·∪Ar−1. Otherwise, there is an edge of the cycle containing
s vertices outside of A1∪·· ·∪Ar−1, as well as a vertex from each of A1, . . . ,Ar−1 (since the
edge has colour r). This gives t ≥ s+ r−1, a contradiction. Thus, the cycle has length at
most s(r−1)

⌊ n
s(r−1)+1

⌋
≤
⌈ s(r−1)n

s(r−1)+1

⌉
.

Conjecture 4.1.11 is exclusive from the preceding results when s≥ 3. For this, Dorbec
et al. proved that the conjecture holds for r = 2, s = 3 and t = 5. They also proved the
partial result where the condition r+ s> t+1 is significantly weakened, with the sum r+ s
essentially being replaced by the product rs.

Theorem 4.1.13 (Dorbec, Gravier, Sárközy - 2008 [22]) Let n≥ 7. Then, every 2-colouring
of K5

n contains a monochromatic Hamiltonian 3-tight Berge cycle.
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Theorem 4.1.14 (Dorbec, Gravier, Sárközy - 2008 [22]) Let 2≤ r,s≤ t be fixed such that
rs+1 ≤ t, and n ≥ 2(s+1)tr2. Then, every r-colouring of Kt

n contains a monochromatic
Hamiltonian s-tight Berge cycle.

Gyárfás et al. then managed to prove the smallest non-trivial case of Conjecture 4.1.11:
r = 2, s = 3 and t = 4.

Theorem 4.1.15 (Gyárfás, Sárközy, Szemerédi - 2010 [59]) There exists n0 such that for
n ≥ n0, every 2-colouring of K4

n contains a monochromatic Hamiltonian 3-tight Berge
cycle.

Theorem 4.1.15 improved an earlier result by the same authors [60] that, for n ≥ 15,
every 2-colouring of K4

n contains a monochromatic 3-tight Berge cycle with length at least
n−10.

We end this subsection by considering an analogue of Gallai colourings for
hypergraphs. We say that an edge-colouring of the t-uniform complete hypergraph Kt

n

is a t-Gallai colouring if no complete subhypergraph Kt
t+1 has distinct coloured edges,

i.e. there is no rainbow coloured t-simplex. Hence, a 2-Gallai colouring is just a
Gallai colouring. This generalisation was suggested by Gyárfás and Lehel in 2007. They
observed the fact that: Every Gallai coloured complete graph has a monochromatic
connected subgraph (mentioned in Subsection 2.6) does not extend to t-Gallai colourings
of Kt

n. Define ft(n) to be the maximum integer m such that, for every t-Gallai colouring of
Kt

n, there exists a monochromatic connected subhypergraph on at least m vertices. Gyárfás
and Lehel proposed the following problem.

Problem 4.1.16 (Gyárfás, Lehel - 2007; appeared in Chua et al. [21]) For n ≥ t ≥ 2,
determine the function ft(n).

Chua et al. proved the following result for t = 3.

Theorem 4.1.17 (Chua, Gyárfás, Hossain - 2013 [21])

(a)
⌈ n+3

2

⌉
≤ f3(n)≤

⌈ 4n
5

⌉
, and this determines f3(n) for 3≤ n≤ 6.

(b) f3(7) = 6.

4.2 Partitioning and covering by monochromatic subhypergraphs

In this subsection, we consider problems about partitioning or covering of edge-coloured
hypergraphs by monochromatic subhypergraphs. These monochromatic subhypergraphs
will be cycles, paths, and connected hypergraphs.
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Here, we will use another type of path and another type of cycle. Let t ≥ 2. A t-uniform

hypergraph P is a loose path of length ` ≥ 0 if P consists of distinct vertices v1, . . . ,v`−1

and distinct edges e1, . . . ,e` such that for 1≤ i< j ≤ `, we have ei∩ e j = {vi} if j− i = 1,
and ei ∩ e j = /0 otherwise. Similarly, a t-uniform hypergraph C is a loose cycle of length
` ≥ 2 if C consists of distinct vertices v1, . . . ,v` and distinct edges e1, . . . ,e` such that, if
` = 2, then t ≥ 3 and e1 ∩ e2 = {v1,v2}. Otherwise, if ` ≥ 3, then for 1 ≤ i ≤ `, we have
ei∩ ei+1 = {vi} (where e`+1 = e1), and ei∩ e j = /0 for every 1≤ i 6= j ≤ ` with | j− i| 6≡ 1
(mod `).

As in Section 3, we have degenerate cases of loose paths and loose cycles. For fixed
t ≥ 2, we will also regard a set of less than t vertices as a loose path, and a single t-edge or
a set of less than t vertices as a loose cycle.

Gyárfás and Sárközy proved some results concerning the partitioning and covering of
the vertex set of an edge-coloured t-uniform complete hypergraph Kt

n, using monochro-
matic Berge paths, loose paths or loose cycles.

Theorem 4.2.1 (Gyárfás, Sárközy - 2013 [56]) For every t-colouring of Kt
n, there exists a

partition of the vertices into monochromatic Berge paths with distinct colours.

Theorem 4.2.2 (Gyárfás, Sárközy - 2013 [56]) For every 2-colouring of Kt
n, there exist

two vertex-disjoint monochromatic loose paths of distinct colours such that they cover all
but at most 2t−5 vertices.

Theorem 4.2.3 (Gyárfás, Sárközy - 2013 [56]) Let r≥ 1 and t ≥ 3. There exists a constant
c′ = c′(r, t) such that in every r-colouring of Kt

n, the vertices can be partitioned into at most
c′ monochromatic vertex-disjoint loose cycles.

By Theorem 4.2.3, we see that the number of loose cycles is independent of n, and
we can define c(r, t) to be the minimum number of monochromatic loose cycles needed
to partition the vertex set of any r-coloured t-uniform complete hypergraph Kt

n. This is a
generalisation of the consequence of Theorem 3.1.8 that the cycle partition number p(r)
is well-defined. The proof of Theorem 4.2.3 by Gyárfás and Sárközy used the method of
Erdős et al. [27] and the linearity of Ramsey numbers of hypergraphs with bounded degree,
and this gave quite a weak upper bound for c(r, t) (exponential in r and t). Sárközy used
a version of Rödl and Schacht’s regularity lemma for hypergraphs to obtain the following
improvement, for sufficiently large n.

Theorem 4.2.4 (Sárközy - 2014 [88]) Let r, t ≥ 2. There exists n0 = n0(r, t) such that
if n ≥ n0, then for every r-colouring of Kt

n, the vertices can be partitioned into at most
50rt log(rt) vertex-disjoint monochromatic loose cycles.
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Gyárfás and Sárközy also made the following conjecture in relation to Theorem 4.2.2.

Conjecture 4.2.5 (Gyárfás, Sárközy - 2013 [56]) For every 2-colouring of Kt
n, there exist

two disjoint monochromatic loose paths of distinct colours such that they cover all but at
most t−2 vertices. This estimate is sharp for sufficiently large n.

They provided the following construction which shows that if true, Conjecture 4.2.5 is
best possible (for sufficiently large n).

Construction 4.2.6 Let X and Y be two disjoint sets of vertices with |X | = m(t − 1)+ 1
and |Y | = 2(t− 1), where m ≥ 4(t− 1). Consider the t-uniform complete hypergraph on
X ∪Y . We colour all t-edges within X red, and all remaining t-edges blue.

In the construction, any red loose path leaves at least |Y | > 2t− 3 vertices
uncovered. Also, any blue loose path has at most 2|Y | edges and hence does not cover at
least |X |− (2|Y |(t−1)−|Y |+1)≥ 2t−3 vertices of X , since m≥ 4(t−1). Now, any two
monochromatic vertex-disjoint loose paths with distinct colours together do not cover at
least t− 2 vertices. Indeed, if at least one path is trivial, then at least (2t− 3)− (t− 1) =
t − 2 vertices are uncovered by the two paths. Otherwise, the two paths together cover
p(t−1)+2 vertices for some p. However, we have (m+2)(t−1)+1 vertices, thus at least
t−2 vertices remain uncovered.

Next, as in the case for graphs, we can consider a situation when the edge-coloured host
hypergraph is not complete, by fixing the independence number of the hypergraph. In this
direction, Gyárfás and Sárközy extended Theorem 4.2.3 as follows.

Theorem 4.2.7 (Gyárfás, Sárközy - 2014 [57]) Let r≥ 1, t ≥ 2 and α≥ t−1. There exists
a constant c′ = c′(r, t,α) such that, for every r-colouring of a t-uniform hypergraph H with
independence number α(H) = α, the vertex set V (H) can be partitioned into at most c′

monochromatic vertex-disjoint loose cycles.

As before, we can define c(r, t,α) to be the minimum number of monochromatic loose
cycles needed to partition the vertex set of any r-coloured t-uniform hypergraph H with
independence number α(H) = α. The upper bound for c(r, t,α) obtained by Gyárfás and
Sárközy is again quite weak, and it would be desirable to find a good upper bound.

We see that for the function c(r, t,α), the cases t = 2, α = 1; t = 2; and α = 1 give
previous functions p(r), p(r,α) and c(r, t) respectively. Gyárfás and Sárközy made the
following conjecture for general t and α. It is an extension of the theorem of Pósa (Theorem
3.1.21) to t-uniform hypergraphs.
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Conjecture 4.2.8 (Gyárfás, Sárközy - 2014 [57]) For t ≥ 2 and α≥ 1, we have c(1, t,α) =
α. That is, for every t-uniform hypergraph H, the vertex set V (H) can be partition into at
most α(H) loose cycles.

Gyárfás and Sárközy proved a result that is weaker than Conjecture 4.2.8 (but still
extends Pósa’s theorem), replacing loose cycles by weak cycles where only cyclically
consecutive edges intersect but their intersection size is not restricted.

Theorem 4.2.9 (Gyárfás, Sárközy - 2014 [57]) The vertex set of every t-uniform hyper-
graph H can be partitioned into at most α(H) vertex-disjoint vertices, edges and weak
cycles.

Now, we consider problems about partitioning and covering of edge-coloured hyper-
graphs by monochromatic connected subhypergraphs. We remark that this can be seen as
an extension of the situation for edge-coloured graphs where we partition or cover
their vertex sets by monochromatic trees, which is equivalent to using monochromatic
connected subgraphs.

We have the following result of Fujita et al. about partitioning, which is the extension
of Theorem 3.2.13 as we have remarked earlier.

Theorem 4.2.10 (Fujita, Furuya, Gyárfás, Tóth - 2012 [32]) For t ≥ 2 and every 2-
colouring of a t-uniform hypergraph H, the vertex set V (H) can be partitioned into at
most α(H)− t +2 monochromatic connected subhypergraphs.

Next, we consider results about covering. We recall the case of the conjecture of Ryser
and Lovász (Conjecture 3.2.15) for r-coloured complete graphs, i.e. the tree covering
number is r−1. Somewhat surprisingly, Király proved that an analogue of the conjecture
holds for hypergraphs.

Theorem 4.2.11 (Király - 2014 [69]) For t ≥ 3 and every r-colouring of the t-uniform
complete hypergraph Kt

n, the vertex set can be covered by at most
⌈ r

t

⌉
monochromatic

connected subhypergraphs. This result is best possible for all sufficiently large n.

The case 1 ≤ r ≤ t in Theorem 4.2.11 was already known, and is a result of Gyárfás
[44] as mentioned in the remark after Theorem 4.1.1.

In [69], Király provided a construction of an r-colouring of Kt
n, which shows that the

bound of
⌈ r

t

⌉
in Theorem 4.2.11 is best possible. However, his construction is valid only

for r ≡ 1 (mod t) and a specific value of n. Here, we modify his construction slightly to
present an r-colouring of Kt

n for all r > t ≥ 2 and sufficiently large n, such that the vertices
of Kt

n cannot be covered by fewer than
⌈ r

t

⌉
monochromatic connected subhypergraphs.
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Construction 4.2.12 Let r > t ≥ 2, with r = ct + b for some c ≥ 1 and 1 ≤ b ≤ t. Let
n ≥

(r
c

)
. We colour the edges of Kt

n with r colours as follows. Let X = {1, . . . ,r}, and
assign c-subsets of X to the vertices of Kt

n such that every c-subset appears. Now, for an
edge e of Kt

n, the union of the c-subsets at the vertices of e has size at most ct, and hence
does not contain some i ∈ X. We colour the edge e with such a colour i. This gives an
r-colouring of Kt

n.

Then in this r-colouring of Kt
n, any set of

⌈ r
t

⌉
− 1 = c monochromatic connected

subhypergraphs do not cover all the vertices of Kt
n. Indeed, if we take all edges whose

colours are in some set Y ⊂ X with |Y | = c, then any vertex of Kt
n labelled by Y is not

covered by the edges.
Fujita et al. then considered extensions of Király’s result, where the host hypergraph H

is t-uniform and has independence number t.

Theorem 4.2.13 (Fujita, Furuya, Gyárfás, Tóth - 2014 [33]) Let t ≥ 2, and H be a t-
uniform hypergraph on at least t +1 vertices, with α(H) = t.

(a) For every t-colouring of H, the vertex set V (H) can be covered by at most two
monochromatic connected subhypergraphs.

(b) If t ≥ 3, then for every (t + 1)-colouring of H, the vertex set V (H) can be covered
by at most three monochromatic connected subhypergraphs.

Fujita et al. remarked that in part (b), the case t = 2 does not hold, since the construction
mentioned after Conjecture 3.2.15 (with r = 3 and α = 2) is an example of a 3-coloured
graph G with α(G) = 2, which needs at least four monochromatic connected subgraphs to
cover the vertex set V (G). On the other hand, Aharoni’s result (Theorem 3.2.16) shows
that four monochromatic connected subgraphs is best possible. They also provided the
following examples, showing that both (a) and (b) are sharp.

Construction 4.2.14 For (a), a trivial example is a hypergraph containing a complete t-
uniform complete hypergraph and one isolated vertex, with any t-colouring. A less trivial
example is a t-uniform hypergraph with vertices partitioned into t classes V1, . . . ,Vt , and
having all t-edges that do not meet all classes. The colour of an edge e is any i such that e
does not meet the class Vi.

For (b), consider the following (t + 1)-coloured t-uniform hypergraph. Take disjoint
vertex sets V1, . . . ,Vt+1 and an isolated vertex, and add all t-edges in V1 ∪ ·· · ∪Vt+1. The
colour of an edge e is any i such that e does not meet the class Vi.
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Then in all three constructions, the hypergraph has independence number t. In the

first two examples, one monochromatic connected subhypergraph does not cover all the
vertices, and in the last example, two monochromatic connected subhypergraphs are
insufficient.

5 Appendix: Finite Affine Planes and Affine Spaces

It is a well-known result from algebra that there exists a finite field with q elements if and
only if q is a prime power. Moreover, if q is a prime power, then a finite field with q
elements is unique up to isomorphism, and we denote this field by Fq.

Let t,q≥ 2 be integers, where q is a prime power. The finite affine space of dimension
t over the field Fq, denoted by AG(t,q), is a finite geometry which consists of a vector
space of qt points, and a collection of hyperplanes, each of which is a coset of a subspace
with dimension t−1. The collection of hyperplanes can be partitioned into qt−1

q−1 = 1+q+
q2 + · · ·+qt−1 classes, so that each class contains exactly q pairwise parallel hyperplanes,
forming a partition of the qt points.

More precisely, AG(t,q) may be defined as follows. The field Fq is equipped with
addition and multiplication operations with identities 0 and 1. Consider the grid Ft

q =

{(x1, . . . ,xt) : xi ∈ Fq for 1 ≤ i ≤ t}. Two non-zero vectors (a1, . . . ,at) and (b1, . . . ,bt) of
Ft

q are equivalent if there exists c∈ Fq \{0} such that (b1, . . . ,bt) = (ca1, . . . ,cat). It is easy
to see that this defines an equivalence relation on the non-zero vectors of Ft

q, and there are

r = qt−1
q−1 = 1+q+q2+ · · ·+qt−1 equivalence classes. Let (a11, . . . ,at1), . . . ,(a1r, . . . ,atr)∈

Ft
q be representatives from these equivalence classes. Now for 1 ≤ j ≤ r and c ∈ Fq, a

hyperplane is a set H j,c = {(x1, . . . ,xt) ∈ Ft
q : a1 jx1 + · · ·+at jxt = c}. Note that each H j,0

(for 1 ≤ j ≤ r) is a vector subspace of Ft
q with dimension t− 1, and every H j,c is a coset

of H j,0 (for c ∈ Fq). We define AG(t,q) to consist of the points of Ft
q, and the set of

all hyperplanes H j,c. Then, many properties are satisfied by AG(t,q), which include the
following.

• Every hyperplane contains qt−1 points.

• Every point is contained in exactly r = 1+q+q2 + · · ·+qt−1 hyperplanes.

• Every set of t points lies in a unique hyperplane.

• There are a total of qr = q(1+q+q2+ · · ·+qt−1) hyperplanes. Moreover, the family
of all hyperplanes can be partitioned into families P1, . . . ,Pr, where P j = {H j,c : c ∈
Fq} for 1 ≤ j ≤ r. Each family P j contains exactly q hyperplanes which form a
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partition of the qt points of Ft

q. The families P1, . . . ,Pr are called the parallel classes
of hyperplanes.

In particular, if t = 2, then the finite geometry AG(2,q) is the finite affine plane over Fq.
In this case, the hyperplanes become lines.
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