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Abstract 

This paper deals with the probabilistic solution of random Riccati-type differential 

equations that appear in a class of epidemiological models usually referred to as SIS-type 

models. Taking advantage of Random Variable Transformation technique, the first probabilistic 

density function of the solution stochastic process of that class of random differential equations 

is determined by two different ways. This permits to characterize, from a probabilistic point of 

view, the solution in every time instant and to compute its expectation, variance and confidence 

intervals. The obtained results are very general since all the model input parameters are 

assumed to be random variables with an arbitrary joint probability density function. 

1. Introduction 

Deterministic ordinary differential equations have played a key role to 

model many infectious diseases [11, 1]. The application of these models 

requires setting model input parameters such as coefficients, forcing terms 

and initial/boundary conditions. In practice, these values are set from 

measurements, which often involve measurement and modelling errors. From 

this simple but realistic perspective, it is natural to consider model input 

parameters as random variables or stochastic processes rather than 

deterministic quantities. Under this approach, two main classes of 

differential equations, which consider into their formulation uncertainty, 
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have been proposed to formulate continuous models, namely, stochastic 

differential equations (SDEs) and random differential equations (RDEs). 

On the one hand, the uncertainty or noise considered in SDEs is forced by 

an irregular process, usually termed white noise [3, pp. 40-44]. This process is 

the derivative of the Wiener process or Brownian motion (in a generalized 

sense of distributions). The Wiener process is characterized because its 

increments are Gaussian, stationary and independent. As a result, its 

increments are implicitly assumed to be statistically uncorrelated [14]. Thus, 

randomness in SDEs is limited to Gaussian type. This approach leads to Ito-

type SDEs. Handling SDEs requires a special stochastic calculus, usually 

referred to as Ito-Calculus [3, Part II]. Ito’s Lemma is the cornerstone result 

to solve SDEs [3, Ch.3]. In some cases the consideration of SDEs from its 

deterministic counterpart, can nicely be motivated via the perturbation of the 

involved deterministic input parameters [5, Ch.1]. Additionally, SDEs can 

also be seen as continuous version of auto-regressive models, which are 

widely applied in statistics [21]. Apart from using Wiener process to model 

uncertainty in SDEs, some authors have also considered another class of 

stochastic processes, termed coloured noise. This approach enables to take 

into account the short-term correlation often encountered in applications. A 

good account of SDEs with coloured noise and their applications can be found 

in [3, p.259], [6] and in [8, Ch.3]. Finally, we point out a generalization of Ito-

type SDEs referred to as Ito-type stochastic fuzzy differential equations. This 

class of equations extends the notions of real-valued Ito SDE and set-valued 

Ito SDE using, in its integral form, fuzzy stochastic Lebesgue-Aumann 

integral and fuzzy-stochastic Ito integral driven by Wiener process [16]. None 

of the above types of SDEs is considered throughout this paper. 

On the other hand, the random character of RDEs is manifested directly 

through input parameters, which are assumed to have regular behavior 

described by standard probabilistic distributions. For this choice, a wide 

range of potential probabilistic distributions are allowed including the 

classical ones such as exponential, gamma, beta, Gaussian, etc. In this 

manner, it can be considered that uncertainty is introduced in a more natural 

way in dealing with RDEs than SDEs. Unlike SDEs, RDEs permit 

considering other probabilistic behaviours apart from Gaussian randomness. 

An excellent introduction to RDEs can be found in [19]. Generalizations to 
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RDEs using the so-called fuzzy approach has been made recently leading to 

random fuzzy-differential equations [17]. 

In this paper, a Riccati-type differential equation that appears in dealing 

with an important epidemiological model, termed SIS model, is solved from a 

probabilistic standpoint using the RDE approach. SIS model considers the 

spread of a disease which develops over time. This model assumes that 

individuals of population are classified in two types of individuals, 

Susceptible (S) and Infected (I). Transitions can be from Susceptible to 

Infected or vice versa, which usually is represented as .SIS   SIS-type 

epidemiological models have been extensively used to describe the spread of 

diseases such as, gonorrhea, meningitis, etc. [11, 1, 5]. We will introduce 

randomness in the SIS model by considering in its deterministic formulation 

that all the involved model input parameters (coefficients and initial 

conditions) are random variables rather than constant quantities. As it shall 

see later, this leads to a Riccati-type RDE. The main finding of this paper is 

the determination, through a closed-form expression, of the first probability 

density function (1-PDF) of the solution of the Riccati-type RDE associated to 

the SIS model. This will be done taking advantage of the so-called Random 

Variable Transformation (RVT) method. This method, that will be introduced 

in the next section, has been successfully applied to solve some types of RDEs 

both by means of abstract formulations [10, 2, 3] and in applications [20, 12]. 

As it will be seen later, the results presented in [2] concerning to first-order 

random linear differential equations will play an important role in our 

subsequent development. In the context of epidemiological models based on 

RDEs, the RVT method has been recently applied to study the so-called SI 

model [15, 4]. Under the SI model transitions from infected to susceptible 

subpopulations are not contemplated, thus it is simpler than the SIS model. 

It is important to point out that the computation of the 1-PDF is 

advantageous because from it, a full probabilistic description in each time 

instant of the solution of the SIS model is achieved. In particular, the 

computation of the mean, the variance and confidence intervals follows 

straightforwardly from the 1-PDF. This fact constitutes valuable information 

from a practical point of view because it permits providing more realistic 

answers than its deterministic counterpart where predictions are just 

punctual values. 
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SIS-type models considering uncertainty in their formulation have been 

previously studied but using the SDE approach, see for example [9, 8]. 

Therefore, the randomness under this approach is assumed to be of Gaussian 

type, and as a consequence its application to real data is limited. As it has 

been previously pointed out, the approach proposed in this paper permits 

considering further probabilistic distributions for the model input parameters 

besides Gaussian patterns and also including the possibility that model input 

parameters be statistically dependent, i.e., they have an arbitrary joint 

probability density function. 

This paper is organized as follows. Section 2 is devoted to introduce SIS 

model through a system of differential equations whose inputs are random 

variables. An important technique that we will need for solving this type of 

problems, the RVT method, is presented in Section 3. In Section 4, the 1-PDF 

of the solution of that random system is computed taking advantage of RVT 

technique. Conclusions are drawn in Section 5. 

2. Description of the SIS Model 

SIS model is a classical mathematical representation to describe the 

dynamics of diseases for which infection does not confer immunity. The total 

number of individuals of the population are divided into two subpopulations, 

Susceptibles (S) and Infected (I). The SIS-model can be formulated by the 

following nonlinear system of differential equations 

       

       
,0

,

,













t

tItItStI

tItItStS

 (1) 

with initial conditions 

    .0,0 00 IISS   (2) 

 tS  and  tI  denote the percentage of susceptibles and infected at the time 

instant t, respectively. At the beginning these values correspond to 0S  and 

.0I  As the total population is classified as either susceptible or infected, then 

    .0,1  ttItS  (3) 

The parameters  and  denote the rate of decline in the percentage of 

susceptibles and the recovery rate (infected that are again susceptible), 
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respectively. The model can be represented by means of a compartmental 

diagram (see Figure 1). From this graphical description and using an 

argument based on the physical mass law it is straightforward setting the 

model (1)-(2), [1]. 

 

Figure 1. Flow diagram representation of the SIS model (1)-(2). 

As it has been previously motivated, throughout this paper we will 

assume that parameters ,0S  and  are random variables. As a result, from 

(3), 0I  is also a random variable. 

Although the main goal of this contribution is to determine the 1-PDF of 

the underlying Riccati-type RDE associated to model (1)-(2), it is important to 

point out some issues regarding its applications. First, since random variable 

0S  represents the initial percentage of susceptibles, it lies between 0 and 1, 

hence a consistent probability distribution to describe it is the beta 

distribution. Secondly, random input parameters  and  determine the 

contagion and the recovery rate from the disease, respectively, and, as a 

consequence, both are positive. Therefore, consistent probability distributions 

to be assigned to them are, for example, exponential and gamma, as well as 

another distribution, like Gaussian, truncated on positive intervals. All these 

types of distributions can be handled under the proposed approach. 

3. Some Results about RVT Method 

As it has been pointed out previously, the main goal of this paper is to 

obtain the 1-p.d.f. of the solution of the Riccati-type associated to the SIS 

model (1)-(2) taking advantage of RVT method. RVT is a powerful method to 

determine the PDF of a random variable which comes from mapping another 

random variable whose PDF is known. 

The next result establishes a general version of RVT method. 
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Theorem 1 (RVT multidimensional version [10, pp. 24-25]). Let 

 TnUU ,,1 U  and  TnVV ,,1 V  be two n-dimensional absolutely 

continuous random vectors. Let nn  :g  be a one-to-one deterministic 

transformation of U into V, i.e.,  .UV g  Let us assume that g is continuous 

in U and has continuous partial derivatives with respect to U. If  uUf   

denotes the joint PDF of vector U, and    ,,,,11
1  nvvh gh  

 Tnn vvh ,1  represents the inverse mapping of    ,,,,11  nuugg  

  ,,1
T

nn uug   then the joint PDF of vector V is given by 

     ,Jff vhv Uv   

where J  is the absolute value of the Jacobian defined by 
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Now, we establish several results from Theorem 1 that will be required in 

the next section. 

Proposition 1. Let  TUUU 321 ,,U  be an absolutely continuous 

random vector defined on a probability space  ,, F  and with joint PDF 

 321,, ,,
321

uuuf UUU  such that     .10: 2  wUw  Then, the PDF 

 lfL  of the transformation 
2

3
1 U

U
UL   is given by 

 
    










2 3
321

.,, 2332
2

3
,,

U U
UUUL duduuu

u

u
lflf

 
 (4) 

Proof. Let us consider the transformation      321321 ,,,, uuuvvv g  

.,, 32
2

3
1 








 uu

u

u
u  Its inverse mapping is given by   321 ,, vvvh  

,,, 32
2

3
1 








 vv

v

v
v  being its Jacobian .01 J  Then, applying Theorem 1, 
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we get the joint PDF of the random vector 







 32

2

3
1 ,, UU

U

U
UV  

  .,,,, 32
2

3
1,,321,, 321321









 vv

v

v
vfvvvf UUUVVV  

Now, the PDF of random variable L given by (4) is straightforwardly obtained 

by marginalizing  321,, ,,
321

vvvf VVV  with respect to 2V  and .3V   

Proposition 2. Let c  and X be an absolutely continuous real random 

variable defined on a probability space  ,,, F  with PDF  .xfX  Assume 

that X is a non-zero random variable and let us denote by  X  the domain of 

X, where 

 
   

   






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,

xXxI

xXxI
IIX

x

x
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


  

Then, the PDF  yfY  of the inverse-vertical translation transformation 

c
X

Y 
1

 is given by 

 
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2
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where 
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y
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Proof. Let us consider the transformation   .
1

c
x

xgy   Its inverse 

mapping is given by   ,
1

cy
yhx


  being its Jacobian 

  .01
2
 cyJ  Then, expression (5) corresponding to the PDF of 

random variable c
X

Y 
1

 is immediately obtained by applying Theorem 1. 

The determination of the domain  Y  follows easily since the 

transformation  xg  is decreasing monotone in each subinterval.  
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Proposition 3. Let  TUUU 321 ,,U  be an absolutely continuous 

random vector defined on a probability space  ,, F  and with joint PDF 

 321,, ,,
321

uuuf UUU  such that     .11: 1  wUw  Then, the PDF 

 321,, ,,
321

vvvf VVV  of the three-dimensional transformation 

,,,
1

1
32332

1
1 UUVUV

U
V 


  

is given by 

 
 

.
1

,,1
1
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2

1

223
1

,,321,, 321321
v

vvv
v

fvvvf UUUVVV 







  (6) 

Proof. Let us consider the transformation    321321 ,,,, uuuvvv g  

.,,
1

1
323

1




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



 uuu

u
 Its inverse mapping is given by   321 ,, vvvh  

,,,1
1

223
1









 vvv

v
 being its Jacobian   .01

2
1  vJ  Then, applying 

Theorem 1, we get the joint PDF of 










 323

1
,,

1

1
UUU

U
V  given by (6). 

4. Main Result: Determination of the 1-PDF of the SIS Model 

Notice that from the relationship (3) one gets    .1 tStI   Hence, 

initial value problem (IVP) (1)-(2) can be rewritten as the following Riccati 

RDE with initial condition 

        

 











.0

,0,

0

2

SS

ttStStS
 (7) 

In this section we will determine the probabilistic solution of (7) by 

computing its 1-PDF. In this manner a full probabilistic description of the 

percentage of susceptibles,  ,tS  of the SIS model (1)-(2) will be done. This 

computation will be performed in two different ways. It will lead to two 

representations of the 1-PDF, which, although in appearance seem to be 

distinct are equivalent. At this point we underline that having several 
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available representations of the 1-PDF is very useful from a computational 

point in order to reduce the computational burden. This also exhibits the 

flexibility of RVT technique in dealing with the determination of the 1-PDF of 

RDEs. 

Our main result is 

Theorem 2. Let us consider the Riccati RDE (7) where  ,,0S  is 

assumed to be a random vector defined on a probability space  ,, F  and 

with joint PDF  .,,0,,0
 sfS  Then, the 1-PDF of the solution stochastic 

process  tS  of (7) can be represented in the two following ways: 
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where 2Z  and ,3Z  that appear in the domains of integration, are defined by 

 teZ 




2  and ,3 


Z  and 
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Proof. In order to demonstrate the first representation, let us introduce 

the following change of variable 

 
 

.
1

1




tS
tQ  (10) 

This permits rewriting the Riccati RDE (7) as the linear IVP 
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
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Let us suppose that the 1-PDF,  ,qfQ  of the solution  tQQ   of IVP (11) 

has been obtained. Then, by applying Proposition 2 to QXSY  ,  and 

,1c  the PDF of the number of susceptibles,  ,tSS   will be given by 
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Now, we will determine the 1-PDF  ,qfQ  and as a result, the 1-PDF of  tS  

will be obtained using (12). To that end, let us apply expression [14, Equation 

(157)] taking 
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Then, according to [14, Equation (157)] the expression of the PDF for the 

random variable Q is given by 
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1

,ln,,,
Z Z

ABZQ tt

q
fqf

 
 

,ln
1
22


















 dd

t
 

where tA

A

B
Z e2   and .3 A

B
Z


  Since the PDF of random vector 

 ,,0S  is assumed to be known, applying Proposition 3 with the following 

identification:  201 , USU  and ,3 U  one gets the PDF of the random 

vector 










,,

1

1

0S
 in terms of our data 

 
 

 
    






































 

3 2
0

ln,1ln
1

,1,,
Z Z

SQ ttq
fqf

 
 

 
.ln

1
22















 dd

tq
 

Notice that domains  2Z  and  3Z  are easily determined in terms of the 
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domains of the inputs  and  as follows 

      ., 3
t

2 
























   ZeZ  

Now, taking into account relationship (12), it is straightforward to obtain 

expression (8). 

In order to establish (9), let us introduce the following change of variables 

    .



 tHtQ  (13) 

It permits writing IVP (11) as follows 

     

 

















,
1

1
0

,0,

0S
H

ttHtH

 (14) 

whose solution is given by 

    .
1

1

0

te
S

tH 















  

Next, let us apply Theorem 1 to random vector   ,,0SU  

    .,,
1

1
32

0
1 















  Vte

S
V t VH  

This yields 

 
 



















  332v

321

2132
,,321,, ,,

e

vve
,,

2

2

0321
vvv

vvv

vv
fvvvf

t

tv

SVVV  

.e
e

2

2

2

v
321

2 tv

t
vvv

v
















  (15) 

Now, we compute the PDF of  tQQ   taking into account the relationship 

(13) between  tQ  and  .tH  To that end, let us apply Proposition 1 to 

 321 ,, VVVU  and QV   one gets 

 
    
















 
.,,

321 ,, ddqfqf VVVQ  
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Therefore, by (15) we obtain the PDF of Q 

 
 

     



 



















 
,,

e
,,0 t

t

SQ
eq

q
fqf  

.

2



















 


dde

eq

t

t
 

Finally, taking into account (12) it is straightforward to obtain expression 

(9). This finishes the proof.  

5. Conclusions 

The SIS model plays an important role in modelling the spread of 

diseases over time. The consideration of uncertainty in this epidemiological 

model leads to a Riccati-type random differential equation. In this paper we 

have obtained the first probability density function (1-PDF) to the solution 

stochastic process of that random differential equation taking advantage of 

the so-called Random Variable Transformation technique. The computation of 

the 1-PDF has been done by two different ways assuming that all input 

parameters are random variables. The 1-PDF has been obtained under very 

general hypotheses since all model input parameters are assumed to be 

random variables with arbitrary joint PDF. This fact is a key issue in dealing 

with practical applications of the SIS model where the random input 

parameters could be statistically dependent with different joint PDFs. 

Moreover, we point out that from a practical standpoint, the computation of 

the 1-PDF is very useful since from it one can construct both punctual and 

probabilistic predictions by means of the mean and confidence intervals, 

respectively. 
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