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Abstract

In this paper, we construct certain multiplicative semigroups S D in the C*- algebras M D
generated by the #*-probability space (/\/[p, (pp) of the =-algebra Mp consisting of all
measurable functions on the p-adic number fields Qp; and the p-adic integration 9p; for
primes p. We study operator-algebraic properties of the corresponding semigroup
C*-subalgebra Sp of Mp, generated by Sp, and spectral properties of Sp, by computing
free distributins of generating operators of &p, for all primes p. More generally, we construct
free product C*- probability spaces of & p’s, and study free probability on  these
Cc*- probability spaces. Our main results illustrate another connection between number theory

and operator algebra theory, via free probability.

1. Introduction

The main purpose of this paper is to consider connections among the
number-theoretic results from p-adic analysis, operator-algebraic structures
induced by p-adic analysis, and operator-theoretic (especially, spectral-
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theoretic) properties over p-adic number fields Q D for primes p. Main tools

to figure out such connections are free probability and representation theory.

1.1. Preview and Motivation. The relations between primes and
operator algebras have been studied in various different approaches. For
instance, we studied how primes act on certain von Neumann algebras
generated by p-adic, and Adelic measure spaces (e.g., [3] and [4]). Meanwhile,
in [5] and [6], primes are regarded as linear functionals acting on arithmetic
functions. In such a case, one can understand arithmetic functions as Krein-
space operators (for fixed primes), under certain Krein-space representations
(e.g., [8]). Also, in [1], [2] and [7], we considered free-probabilistic structures
on a Hecke algebra H(GLy(Q,,)) for a fixed prime p.

In this paper, we considered free-probabilistic models on the *-algebra

M

p» consisting of all Haar-measurable functions over Q,, for primes p, and

its Hilbert-space representation. i.e., we concentrate on investigating p-adic
analysis in terms of suitable operator-algebraic settings. Under our

representation, corresponding C*-algebras M p of M,, are constructed, and
free probability on M, is considered. In particular, for all j € Z, we define
C*-probability spaces (M ,(pf ), where (pf are kind of sectionized linear

functionals implying the p-adic-analytic data on M, in terms of the usual p-

p7
adic integration on Q.

In particular, we are interested in a semigroup S, in M, generated by
certain projections of M ,, and the corresponding semigroup C*-subalgebra

&, of M,. By restricting our interests to the sub- C*- probability spaces

p
(S,, (pf ), for p € P, j € Z, we study free-distributional data of generating
elements of &,. Also, by establishing free products of (& P (pf ), we study

spectral data of operators generating &, forall p € P.

1.2. Overview. In Sections 2, we introduce backgrounds and a

motivation of our works.
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In Section 3, our free-probabilistic models on M,, 1s established, and

considered based on p-adic analysis.

In Section 4, Hilbert-space representations of our free-probabilistic
models of M, are constructed. They preserve the free-distributional data

implying number-theoretic information from M,. Under representation,

corresponding C*-algebras M p are constructed from M.

In Section 5, free probability on M » is studied. In particular, we compute

free distributions of generating operators of M.

In Section 6, semigroups S, of M, are introduced, and the structure

theorem for the C”-subalgebras &, of M, is shown. Depending on our
structure theorem, suitable free-probabilistic models on S p are constructed.

We study free probability on & p-

In Section 7, we study free probability on the free products of &, over

primes.
2. Preliminaries

In this section, we briey mention about backgrounds of our proceeding

works.

2.1. Free Probability. Readers can check fundamental analytic-and-
combinatorial free probability from [12] and [14] (and the cited papers
therein). Free probability is understood as the noncommutative operator-
algebraic version of classical probability theory (covering commutative cases).
The classical independence is replaced by the freeness, by replacing measures
to linear functionals. It has various applications not only in pure mathematics
(e.g., [11]), but also in related applied topics (for example, see [3], [4], [6] and
[8]). In particular, we will use combinatorial approach of Speicher (e.g., [12]).

Especially, in the text, without introducing detailed definitions and

combinatorial backgrounds, free moments and free cumulants will be

computed. Also, we use free product of C”-probability spaces in the sense of
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[12] and [14], without detailed introduction. However, rough introduction

would be given whenever they are needed in text.
2.2. Calculus on Q,. Let Q, be the p-adic number fields for p € P,

equipped with the non-Archimedean p-norms |-|p (on Q), where P is the

set of all primes in the natural numbers (or the positive integers) N. This

Banach space Q p 1s also understood as a measure space

Qp = (Qp, o(Qp), 1p)
equipped with the left-and-right additive invariant Haar measure pu p on the
c- algebra o(Q p ). Recall also that, Q p 1s a well-defined ring algebraically. If
x € Qp, then

0

x = anpn with x, € {0, 1, ..., p—1}
n=—N

for some N € N, 1i.e.,

X = ixkpk +{§:xnan in Q.

k=—N n=0

If N >0, and hence, if x = z:zoxnp” in Qp, then x is said to be a p-
adic integer of Q.

As a topological space, the p-adic number field Q, contains its basis
elements

Uy, = p"z,, forall k e Z, (2.2.1)

satisfying the basis property,
e, = Jus

and the chain property,

wcUyclU cUy=%,cU,,cUyc..,
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and the measure-theoretic data,

uy(Ur) = Lk = up(x + Uy), forall k € Z,
p

for all x e Qp, where
Up=Zp={xeQ,:|x|, =1;
o0
- U U,
1=0
is the unit disk of Q,,, consisting of all p-adic integers.

By understanding Q,, as a measure space, one can establish a *-algebra

M,, over C as a *-algebra consisting of all p,- measurable functions f,

f= ztsxs with tg € C,
Ses(Qp)

where the sum X means a finite sum, and yg are the usual characteristic
functions of S. Of course, the adjoint f* of fis defined to be

f* _ Ztng in Mp’
SEG(Qp)

where Z mean the conjugates of z, for all z € C.

On M

p» onecan naturally define a linear functional ¢ D

9p(f) = j@ fdup, forall f e M,, 2.2.2)
D

and hence, the pair (Mp, (pp) forms a well-determined *-probability space.

Remark that it is a “commutative” *-probability space (and hence, it is well-

covered by (non-commutative) free probability theory).
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Define now subsets 9;, of Q, by
8k . Uk\Uk+1’ for all &k € Z. (223)

We call such p,- measurable subsets 0;, the k-th boundaries of the basis
elements U, of (2.2.1), which are also n 'S measurable subsets, for all & € Z.

By the basis property in (2.2.1), one obtains that

Q, = Uak, (2.2.4)

where U means the disjoint union, and

1 1
Hp©@r) = npUr) = 1pUps1) = — - —7»
D D

by the measure-theoretic information in (2.2.1), for all & € Z.

Now, let M, be the vector space of all p,- measurable functions on Q,,

le.,

My, ={f :Q, » C: f is u,- measurable}. (2.2.5)

So, f € M, if and only if

p’

f= Zts xs Wwith tg € C,
Seotly)

where ¥ means the finite sum, and yg are the usual characteristic functions

of S e o(Qp).

Then it forms a *-algebra over C. Indeed, the vector space M, of (2.2.5)

is an algebra under the usual functional addition, and multiplication. Also,
this algebra M, has the adjoint,

ztSXS def Zths,
Sea(Gp) Sea(Gp)

where tg € C, having their conjugates g in C.
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Let f € M. Then one can define the p-adic integral of f by
[ rdu, = Y tsup(s) 2.2.6)
Qp Ses(Qp)

Note that, by (2.2.4), if S € o(Q,), then there exists a subset Ag of Z, such
that

Ag =1{jeZ:5Nd; =}, (2.2.7)

satisfying the following result.

Proposition 2.1. Let S € o(Q,), and let yg € M,. Then there exist

rj € R, such that
0<r;<linR, forall j € Ag, (2.2.8)
and
I@p xsdup = j;s rj(i. - #J
where Ag is in the sense of (2.2.7).

Proof. By the basis property (2.2.1) and the boundary property (2.2.4), if
S € 5(Qp), then

S=8NQ, :Sm[Ua]}: Usna
Jjez Jjez
in Q.
So, one obtains that
_[ rsdup = up(S) = up[U(S n 8;)]
Qp JeZ

= ZHp(Sﬂa}) = ZHp(S No;)

JEZ JeAs
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where Ag =1{j € Z: SNd; # &} in Z, and hence, there exist
0<r <1 in R, forall j € Ag,
such that
= D orinp@)= Y] ’“j(%—%}
JjeAs jehg NPTOP
Therefore, the formula (2.2.8) holds, for any S e o(Q,).

By (2.2.8), one obtains that if

f= ztSXS e M, with tg € C,
Seo(Qp)

then

I@ fdup = 2 ts| D ’"J‘S(Lj— ,-1+1], (2.2.9)

p Ses(Qp) jeAg

where er are in the sense of (2.2.8), for all j e Ag, for all S e o(Q,),

whenever Ag of (2.2.7) is nonempty in Z. i.e., one obtains the following p-

adic integration, by (2.2.8).

Corollary 2.2. Let f = ZSe tsxs € My, with tg € C. Then there

G(Qp)

exist rJfS e R, such that

0< er <1, forall j e Ag, forall S € o(Qp),

and

I@ fdup = Z ts ers(ij_ j1+1]'

, §o(@p) \jers PT P

Proof. The proof of the corollary is done by (2.2.8) and (2.2.9).
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3. Free Probability on M,

Throughout this section, fix a prime p e P, and let Q, be the
corresponding p-adic number field, and let M p be the *-algebra consisting of
all p p" measurable functions on Q p- In this section, let's establish a suitable
free-probabilistic model on the *-algebra M,. Remark that free probability

provides a universal tool to study free distributions on “noncommutative”
algebras, and hence, it covers the cases where given algebras are

“commutative.” Remark that M, 1s a commutative *-algebra, but, for our

later purposes, we construct free-probabilistic settings on M P

Let Uy, be the basis elements (2.2.1) of the topology for Q,, i.e.,

U, = kap, for all &k € Z, 3.1)

with their boundaries

6k = Uk\Uk+1’ for all & € Z.

Define a linear functional ¢, : M, — C by
o,(f) = JQ fdu,, forall f e M, (3.2)
p

The linear functionals ¢, of (3.2) on M, are nothing but p-adic
integrations on M,, for all p € P, and hence, they are well-defined

unbounded linear functional on M P

Then, by (3.2), one obtains that

1

1 1
(Pp(XUj) =5 and (Pp(Xaj) = F —F,

p
since

Ay, ={keZ:k=j} and Ag; =}

with help of (2.2.8) and (2.2.9), for all j € Z.
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Moreover, by the commutativity on M,
op(hfz) = 9p(fahy), forall fi, fo € My,
and hence, this linear functional ¢ o of (3.2) is a trace on M P

Definition 3.1. The free probability space (Mp, (pp) is called the p-adic
free probability space, for p € P, where ¢ p 1s the linear functional (3.2) on
M,,.

Let U be in the sense of (3.1) in Qp, and XU, € M,, for all & € Z.
Then

XUkl X’Ukz = XUkl ﬂUkz = X’Umax {k1, ..., k2}’
by (2.2.3), where max {k;, ky} means the maximum in {k;, ky}.

Say k < kg in Z. Then Uk1 -) Uk2 in Qp, by (2.2.3). Therefore,

Ukl N Uk2 = Uk2 in Qp. So, if k; < kg in Z, then
KUpy XUy, = LUjy NUp, = AU, M Mp.

Thus, one can verify that

®p (LU, XU, ) = m- (3.3)
Inductive to (3.3), we obtain the following result.
Proposition 3.1. Let (ji, ..., jx) € ZY, for N e N. Then
N
HXUJZ = Lmax {1, .... jn} in Mp, (3.4)
=1

and hence,

N
1
(pp{HXszJ Comax {jg, ., N}
I=1 p
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Proof. The proof of (3.4) is done by induction on (3.3). Indeed, one can
have that

N
S = ﬂUJl = Umax {j17'~'7 JN}’
=1

o~

by the chain property in (2.2.1). Moreover,

N
XS =X = HXUjl in Mp’
=1

Uj

o=

l

I
—_

and hence,
N
op (H XUH] = 1p(8) = 0p (e . i)
=1
Therefore, the joint free-moment formula (3.4) holds.

Now, let 0, be the k-th boundary Up\Uy,; of U in Q,, for all k € Z.
Then, for k;, ky € Z, one obtains that

Xakl Xakz = X6k1 ﬂ@k2 = Skl,kQXakl > (3.5)
where 8 means the Kronecker delta, and hence,

®p(Hog, Xop, ) = Oky, kyPp(Loy, )

_s 11
) ph phl :

So, we obtain the following computations.
Proposition 3.2. Let (j;, ..., jNy) € ZN | for n e N. Then

N

Hx% = 8(jp,...inoy, I Mp, (3.6)
=1

and hence,
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N
1 1
(PP[HX%] = 8(j1’~-~»jN)(p_/'1_ leJ’

p

where

N-1
(s i) = [H sz,jzn](sjzv,h)'
=1

Proof. The proof of (3.6) is done by (3.5).
Thus, one can get that, for any S e o(Q,),

(pp(XS) =®p ZXSQB]- s
JeAs

where Ag isin the sense of (2.2.8)

= Y oslisno;) = D 1p(SN2;)

JjeAs JjeAs
-y rj(i___? J (3.7
J Jj+1
jeAg p D

where 0 < r; <1 are in the sense of (2.2.8), for all j € Z.

Also, if Sy, Sy € 6(Q,), then

keAg) keAg,

D (usinapxssna;)

(k. j)eAg; xAg,

= Z Ok, jX(S1NS2)N8;
(k’ j)E/\Sl XASZ

= ZX(slmsz)maj, (3.8)

jEAsl ,So
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where
As,,s, = As, MNAg,,
because 0, 10; = 8y, ;0;.
In (3.8), it is clear that, if As,, s, is empty, then
X %8y = Onm, = x> the zero element of M,
where @ is the empty set in o(Q,,).
Thus, one can get that there exist w; € R, such that

0<w; <1, forall j e Ag, Sy (3.9)

where

11
oplisits,) = D, wj‘(—j— ,-+1}

jEASLSZ
by (3.8) and (2.2.10), for all S;, Sy € o(Q, ).

By (3.9), we obtain the following general result under induction.
Theorem 3.3. Let S; € o(Q,), and let x5, € (Mp, ), for L =1, ..., N,
for N € N. Let

N
Asl,...,SN = ﬂASl in Z,
=1

where Ag, are in the sense of (2.2.7), for [ =1, ..., N. Then there exist

rj € R, such that

0<r<1linR, (3.10)
and
N 1 1
Wl [T )= ¥ of5-k)
=1 jeSy,...8y P° P
Proof. The proof of (3.10) is done by induction on (3.9). a
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Of course, if Ag is empty in Z, then the formula (3.10) vanishes.

Sy
By (3.10), we obtain that, if

f=Dtsts € (Mp, o), with tg € C,
Sec(Qp)

then

op(f) = D t50,(ts)

Seo(Qp)

> i er[ij—p}HJ, (3.11)

Sea(Qp) jeAg

where rj?g are in the sense of (2.2.10), for all j € Ag.

The above joint free-moment formula (3.11) provides a universal tool to
compute the free-distributional data of free random variables in our p-adic

free probability space (./\/lp, Pp ).
4. Representations of (M,,, ¢,)

Fix a prime p € P. Let (./\/lp, (pp) be the p-adic free probability space.

Now, we construct a representation of M,. By understanding @, as a

measure space, construct the L2 space,

H, def T*(Qp, o(Qy), 1p) = LA(Qp) (4.1)

over C, consisting of all square-integrable p,- measurable functions on Q,,.
Then this L>- space is a well-defined Hilbert space equipped with its inner

product ( , ),

(o fo)y e [ fifidny, forall £, fy < Hy. @2
p

Naturally, H, is the |- [,-norm completion in M, where

p’
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| £ lodef {f. f)g forall f e H, (4.2)

where (, ), is the inner product (4.2) on H,.

Definition 4.1. We call the Hilbert space H, of (4.1), the p-adic Hilbert
space.

By the very construction (4.1) of the p-adic Hilbert space H,, our *-

algebra M, acts on H,, via an algebra-action a”,
oaf(f)(h) = fh, forall h € H,, (4.3)

for all f € M,,. i.e., the morphism o® of (4.3) is an action of M,, acting on

the Hilbert space H,. ie., for any fe M,, the image aP(f) is a
multiplication operator on H, with its symbol f contained in the operator

algebra B(H,,) of all (bounded linear) operators on H,,.

Notation. Denote o (f) by a?, for all f € M,,. Also, for convenience,

denote afs simply by ag, for all S € 6(Q,). For instance,

P _ D _ D

af, = ol =P luw,)
and

P _ P _ D

af = al = aP(s,)

for all ke Z, where U, are in the sense of (3.1), and J, are the

corresponding boundaries of Uy in Q,,, forall & € Z.
It is not difficult to check that
P _ P,D
Opyp = 00y ON H,, for all fi, fo € M,,
and

(afp’)* =a,. on Hy, forall f e M,

f*
Therefore, one obtains that:
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Proposition 4.1. The pair (H,, o) is a well-determined Hilbert-space

representation of M.

Proof. To show the pair (H P a?) is a Hilbert-space representation of

M, it suffices to show that the linear morphism of of (4.3) is a *-
homomorphism from M, into an operator algebra B(H,), which is the *-

algebra consisting of all linear transformations (or operators) on H,.
One can check that

af o (h) = fifoh = A(fh)

filo (1) = o (o (1)

PP
G’fl a’fz(h)’
by (4.3), for all » e H), for all f;, fo € M, and hence,
az fo = OLZ aj;;’ on Hp, forall fi, fo € M,,.

Also, one has that

<0‘?(h1), ha)g = (M, ha), =I fhlhgdup
Qp

= [, mORd, = [ hf) dw,

P D

= IQ P (f"he) duy, = (hy, aﬁ*(hz»g,

p

for all Ay, hyg € Hp, for all f € M,,. Thus, we have

(of)" = a?* on H,, forall f e M,

Therefore, the linear morphism af of (4.3) is a well-determined -

homomorphism from M, into B(H,), equivalently, it is a well-defined *-
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algebra action of M, acting on H,. So, the pair (Hp, a?) is a Hilbert-space
representation of M,,.
The above proposition shows that all *-measurable functions fin M p can

be regarded as operators oc/{’ acting on H,.

Definition 4.2. The Hilbert-space representation (H,, a?) is said to be
the p-adic (Hilbert-space) representation of M.

Depending on the p-adic representation (Hp, a?) of M, one can

construct the C*-subalgebra M p» generated by M,,, in the operator algebra

p7
B(H,). Recall that the operator algebra B(H,) is equipped with the

operator-norm,

1T =sup{|Th|y : h e Hp, | 2]y =13,
for all T € B(H,), where |- |, means the L?-norm (4.2) on H,.

Definition 4.3. Let M, be the operator-norm closure of M, in the

operator algebra B(H ), i.e.,

(S
Mp (ﬁ m"” = C[oc? i f e Mp] n B(Hp), (4.4)

where XI'l mean the operator-norm closures of subsets X of B(H,). Then

the C*-algebra M, is called the p-adic C"- algebra of (Mp, Pp ).
5. Free Probability on M,

Throughout this section, let’s fix a prime p € P. Let (M,, ¢,) be the
corresponding p-adic free probability space, and let (H I a?) be the p-adic

representation of M, inducing the corresponding p-adic C*-algebra M p of

p )
(4.4). In this section, we consider suitable free-probabilistic models on M p- In
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particular, we are interested in a system {(pf {jez of linear functionals on
M, determined by the j-th boundaries {0;};.; of Q.

Define a linear functional (pf : M, — C by a linear morphism,

0% (a) def (ag (x5, ). 10;)g> forall a e M, (5.1)

for all j € Z, where (,), is the inner product (4.2) on the p-adic Hilbert
space H, of (4.1).

First, remark that, if a € M p» then

a = ZtSXS in Mp,
SEG(Qp)

where ¥ is finite or infinite (limit of finite) sum (s), under C*-topology of

M,
Definition 5.1. Let j € Z, and let (pf be the linear functional (5.1) on
the p-adic C*-algebra M. Then the C*-probability space (M, q)j.’ ) is said

to be the j-th (p-adic) C*- probability space.
So, one can get the system
(M, 07): j < 2}
of C”-probability spaces for a fixed C*-algebra M P
Now, fix j € Z, and take the corresponding j-th C*-probability space
(M, (p‘;?). For S € 6(Q,), and an element yg € M, one has that

(Pf(XS) = <a§(Xaj )’ X@j >2 = <XSﬂaj X@j >2

=J 15n0;%0; M p =I xSne;Xo; Ak p
Qp @p

1 1
=| xspe.du,=u (Sﬂ&):rS[—.— : J, (5.2)
J‘Qp ﬂ J P p J p] p]+1
for some 0 <rg <1in R.
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Proposition 5.1. Let S € 6(Q,,), and af = ais e (M,, (pﬁ.’), for a fixed

J € Z. Then there exists rg € R, such that

0<rg <1lin R, (5.3)
and
((c2)Y) =r L1 forall n e N
(P] S =178 p} pj+1 ) .

Proof. Remark that the element ag is a projection in M, in the sense

p’
that:
9 .
(@B)" =af = (af)", in M,
Indeed,
DY _ (P Y _ yP _ qP _ P
(a) —(ocXS) —ocx,é =al =af,
and
PY2 _ P _gP _ P
o =a =af =%,
(e5) (s s S

and hence, the operator ocg 1s a projection on H,,, in M,

Since ocg is a projection in M,
(af)" = af, forall n e N,
So,
(Pp((ag)n) = (Pp(ag) = “p(S)'

Therefore, by (5.2), we obtain (5.3).

The above free-moment formula (5.3) characterizes the free distributions
of ag in the j-th C*-probability space (M, (;)1;.7 ), for j € Z. More precisely,

we obtain the following theorem.
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Theorem 5.2. Let S; € 5(Q,) and ocgl = aP(xg) e (M ,(p‘;.’), for a

fixed jeZ, for I =1,..., N, for N € N. Then there exists 1s, . .sy) € R,

such that
0<ng,.,sy) SlinR, (5.4)
and
N n
1] -
forall n € N.

Proof. Let S;, ..., Sy be up-measurable subsets of Qp, for N e N,

and let

N

S = ﬂSl € o(Qp).

=1
Then, one has that

N

af = Hagl in M,,

=1

satisfying
(@) =ag = (af % in M,.

Therefore, by (5.3), the formula (5.4) holds.

The above joint free moment formula (5.4) characterizes the free-

distributions of finitely many projections (xgl, s agN in the j-th
C* - probability space (M, (pf ), for j € Z, forall N € N.

As a corollary of (5.4), we obtain the following results.
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Corollary 5.3. Let U, be in the sense of (3.1), and 0y, the k-th
boundaries of Uy, in Q, for all k € Z. Then

1 1 . .
—_— - — lf k< J

@j?((agk ")=1p/ p/*! (5.5)
0

otherwise,

and

1 1
PP V) —
HCARRLT E R
J k p’ pJ+1
forall n e N, for k € Z.
6. Semigroup C*-Subalgebras &, of M,

Throughout this section, p € P. Let M, be the p-adic C*-algebra for a

fixed prime p, as in Section 5. Take operators

P,y = ocgk e My, (6.1)

for all £ € Z. As we have seen in Section 5, such operators P, , of (6.1) are

projections on the p-adic Hilbert space H ,, satisfying

p’
% 9 .
(Pp,k) =Ippk :(Pp,k) , 1IN Mp.
Also, by (5.3) and (5.4), we obtain that

1 1
(Pf(Pp,k) = Sj’k(p_j —Fj, forall k e Z (62)

(see (5.5)), in the j-th p-adic C*-probability space (M, (plj‘.’ ), for all j e Z.

Now, define a set of projections P, in M, by

By =1Ppr € My, : k € Z}. (6.3
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This family P, consists of “mutually-orthogonal” projections in the sense

that

Py 1y Pp ks, = Ok iy Pp 1y -

So, under the inherited operator-multiplication on M ,, one can define

the corresponding sub-semigroup
S, = <‘I§p> of M, (6.4)

generated by the family %, of (6.3), where (Y) mean the semigroups (under

inherited operator-multiplication) generated by subsets Y of M P

Proposition 6.1. Let S, be the sub-semigroup (6.4) of the p-adic

C*-algebra M, generated by the family B,, of (6.3). Then
Sp =Py p ke =P, in M, (6.5)

set-theoretically.

Proof. By the very definition (6.4), one has that

N
— npoo. ;
Sp = U { Pp,jl tnp e N, Jl € Z},

NeN (=1

where Y mean the C*-topology closures of subsets Yin M D

However, by the mutual orthogonality of the generating family %3, of

(6.3), since all generating elements P, j are projections,

N
s, = U {pr,jl L eZ}z{Pp’k:keZ},

NeN Ul=1

in M

ps 1€,

set-theoretically.
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The above structure theorem (6.5) shows that the family P, of (6.3),

itself, is regarded as a semigroup Sp of (6.4) in the p-adic C*-algebra M,
under operator-multiplication. From below, we use the terms Bp and S p as

an identical sub-semigroup of M, in the sense of (6.4), by (6.5).

p’
One can also verify that the semigroup S, does not contain its

semigroup-identity from (6.5). So, it is a pure semigroup in M p- Now, we
construct the semigroup C”-subalgebra & p generated by the semigroup S,

of (6.4) in the p-adic C*-algebra M,.
Definition 6.1. Fix p € P. Let &, be the C”- subalgebra
S, = C*(S,) = C[Sp] of M, (6.6)

where S, is the semigroup (6.4). We call this semigroup C”-subalgebra & P

the p-adic boundary (C*-) subalgebra of M D

By the structure theorem (6.5), we obtain the following structure theorem

of G,
Proposition 6.2. Let &, be the p-adic boundary subalgebra (6.6) of the

p-adic C*-algebra M. Then

Spriso ® (C- Py, j) x ziso c®?, (6.7)
Je -

in M, where ® means the (topological) direct product of C*-algebras.
Proof. Observe that
S, = C*(Sp) = (C[Sp]

by (6.6)

= C[(‘Bp]
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by (6.5)

*iso @ C[P, ;] *iso @ (C- P, ;)
jeZ T —— jeZ ’

since P, ; are projections in M, for all j € Z, where ® means (pure-

algebraic) direct product of algebras

*iso @ (C- P, ;)
jeZ ’

where @ means the direct product of C*-algebras under product topology.

Therefore,

D|Z
s, colz

*-iso @ (C- P, ;)*-iso
jeZ T —=

in Mp.

By the structure theorem (6.7) of &,, one can realize that this semigroup

p’

C”-subalgebra & p acts like a diagonal subalgebra inside M ,. Since p-adic
boundary subalgebras &, are C”-subalgebras of M, one can naturally get
the corresponding C*- probability spaces,
(S,, (pf), forall j € Z,
for any fixed p € P.
i.e., we have a family

(&p, 0¥): p e P, j el (6.8)

where the linear functionals (pf;’ in (6.8) are restrict linear functionals of the
linear functionals (p‘]t.’ of (5.1) on M,, for all jeZ, for peP. For

convenience, we denote these restricted linear functionals simply by (pf}’ , too,

forall p e P, j € Z.
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Definition 6.2. We call C*-probability spaces (S,, (pﬁ.’ ), the j-th p-adic

diagonal C*-probability spaces of the j-th p-adic C”-probability spaces

(M ,(pf), forall pe P, and j € Z.

7. Free Product C*-Probability Spaces of {(S,, (pf W pep, jez

For an arbitrarily fixed p € P, let
S(p) = (6, 97): j < 7 (7.0.1)
by the family (6.8) of j-th p-adic diagonal C*-probability spaces.

From a C*-probability space (Sp, (pf) in the family &(p) of (7.0.1), for

Jj € Z, we have that

1 1
PP ) s, _
@’ (aak) = Sj’l{pj ) j, (7.0.2)

by (6.2), where ocgk are the generating projections of the p-adic diagonal

subalgebra &, of M, forall k € Z.

By the structure theorem (6.5) of &,, the above free-moment formula
(7.0.2) characterizes the free distributions of all elements of (GP, gof ), for
jeZ.

7.1. Free Product C*-Probability Spaces. Let (A, ¢;,), be arbitrary

C™-probability spaces, consisting of C*-algebras Aj, and corresponding

linear functionals ¢, for k& € A, where A is an arbitrary countable (finite or

infinite) index set. The free product C”- algebra A,

A= % Al
leA
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is the C™-algebra generated by the “non-commutative” reduced words in

N . . .
U Ni<1 A;, having a free product linear functional,

= % .
¢ leA ?1

The new C*-probability space (A, ¢) is said to be the free product

C*-probability space of {(A4, ¢p)}pcn (e.g., see [12], [14] and cited papers
therein). So, by the very definition, even though each free blocks A; are

commutative for [ e A, the free product C*-algebra A is highly

noncommutative.

The C*-algebra A is understood as a Banach space,

g n
C®( ®[ S (® A D (7.1.1)
n=I\(i, ..., i )eal (A" \ k=1 &
with
A? =A,0C, forallk=1,...,n,
i k
where

(i, ...1,) € A"
alt(A") = 2(i, ...1,) 11 # ig, Iy # i3,¢,
vy lp1 # 0,
for all n e N, and where @, and ® are the (topological) direct product,
respectively, tensor product of Banach spaces.
In particular, if an element a € A 1is of the form of free reduced word,

n

a=| |ail inA,

=1

n
then one can understand a as an equivalent Banach-space vector, @ a;, in
=1

n
the Banach space A of (7.1.1), contained in a direct summand, @® A. of

o
k=1
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(7.1.1). Remark that, under the above equivalence, this free reduced word a of

n
A is regarded as the operator @ a; in
=1

Co® @AO @A,
(kl J k(c "

where @ means the (topological) tensor product of C*-algebras. i.e., the

n
free reduced word a, understood as a Banach-space vector @ a; in A of
k=1

n n
(7.1.1), is regarded as an operator }’@1 a;, in the C"-subalgebra ®¢ A;, of A.

k=1
We denote this relation by
n
a Lui E:Bl a;, in A, as operators. (7.1.2)
Remark that, if a is a free reduced word in A, then
n k
a® eq=ui [l(ial ailJ = 69 a equz H a® inA (7.1.3)

for all £ € N.

Notation and Remark 7.1.1 (in short, NR 7.1.1 below). Let

a = Hl 1 be a free reduced word in A, as above. The power a” in (7.1.3)

means the k-th power of a as an operator of A in the sense of (7.1.2), which is

also understood as a vector in ® A‘; < A in the sense of (7.1.1).
=1

To avoid the confusion, we may use the notation a(k), as a construction of

new free “non-reduced” word,

a(k) =Qa-Qa...a
—_—

k-times
in A.
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For example, let a = a; a;,a; be a free reduced word with
(il’ i2’ Ll) € alt(AS)a

as an operator,

a; ®a;, ®q; inA, by (7.1.2).

Then
3 . 3 - 3.3 .3
a”equi (a; ® a;, ® a;,) equi @ a; a;,
in A, but
®3) _ 3)
a - (ail a’i2 ail )
= Q; Q;, @ @; A, 4; A @, a;p (non-reduced word)
= a: a._a’a;, a’a; a; (reduced word)
nTe T T T e T
in A;ie.,

G- g adda dda a
a” = a;0;,a; 4;,a; 4, ,

as a new free reduced word in A.

So, in the text below, if we use the term “af” for a fixed free reduced

word a, then it is in the sense of (7.1.3). In the following text, we will not use

the concept «gk) » However, we want to emphasize at this very moment the

differences between a” and a® in the free product algebra A, for £ € N. Of

course, a' =a= a(l) in A.

Similar to a” and a(k), one can understand the adjoints a* and a™ of a

fixed free reduced word a in A. 1.e.,

* . n n * . & * .
a equi| ®a; | = ®a; equi I Iail in A,
= /=1 =1

=1

but
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n (*)

=1
n

ol af alal = al

In g1 "7 T2 T ln—1+1"
=1

in A. In the following text, if we use the term a”, then it is determined under
equivalence (7.1.3). Again, we want to emphasize the differences between a*

and o™ in A, at this moment.

So, the free product linear functional ¢ on A satisfies that, whenever a is

a reduced free word in A satisfying (7.1.2), then

o(a”) = {H ] H(cpz,(ak)) (7.1.4)

I=1

by (7.1.3), for all k2 € N. Sometimes, by abusing (7.1.3), one can / may re-
write (7.1.4) by

o(a”) equi (P( J H ola)

whenever a = Hl 1%, ail is a “free reduced word” in A, for all £ € N.

Now, let
n
b= b (4 0)
=1
where b; , ..., b; are free reduced words in A.
We say that a is a free sum in A, if all summands b, ..., b; of b are

contained in “mutually-distinct” direct summands of a Banach space A of

(7.1.1), as equivalent Banach-space vectors (or corresponding operators) of
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the free reduced words. Then, similar to the above observation, one can

realize that

n
b equi l@ bil in the Banach space A of (7.1.1), (7.1.5)
_ :1
satisfying
k . o ok
o(b") equi ¢ L@l bilj = go(l@l bilj
n n
equi 90[ b{;} = w(bf),
=1 =1
for all £ € N.

Here, remark that each summand (p(bli') of (7.1.5) satisfies (7.1.4), for all
l=1,...,n, forall n e N.

Notation and Remark 7.1.2 (in short, NR 7.1.2 below). Similar to the

free-reduced-word case, if b is a free sum in the sense of (7.1.5), then one can

n (%)
k) = [ bﬂj
=1

D By by, by,

(s oo Ip)ell, oy 0

consider

where the summands bl-l1 bi12 "'bilk are free “non-reduced” words in A. In the

following text, we will not use the concept “pk)» in A, But, as before, we

emphasize the differences between b* and 8® for a fixed free sum b of A.

Similar to NR 7.1.1, remark also the differences between

* n : n * - *
b” equi l@l by | = 2@ b;, equi Zbiz’
N N I=1
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and

n
() — (*)
b = Zbil ,
I=1
in (A, ¢), where the adjoints b;; and b; are in the sense of NR 7.1.1, for all
l=1,.., n

For more about (free-probabilistic) free product algebras, and
corresponding free probability spaces, see [11], [12] and [14].

7.2. Free Product C*-Probability Space (S,(Z), 9”). Let p € P be
fixed, and let &(p) be the family (7.0.1)

&(p) = {6, (J) denote (&, o) : j € Z}
of p-adic diagonal C”-probability spaces.

In this section, we construct a free product C-probability space

(6,(2), P) of the family &(p),

(6,(2), o) def s X. (7.2.1)
1le., by (7.2.1),
(©5(2). 0") =+ ©,0) * (S o)
B (j:Z(Gp)j’ jez (pf?j,
with

(&p); =6, forall j e Z,
for a fixed p € P.

Definition 7.1. Let (S ,(Z), ¢”) be the free product C”- probability space
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(7.2.1) of the family &(p) of (7.0.1), for a fixed prime p € P. Then we call it
the p-adic diagonal C*-probability space.

Let T be a free reduced word,

N
T = pr, j, 0 (6,(2), ¢P). (7.2.2)
=1
It guarantees that the corresponding integer-sequence (j;, ..., jy) of T'is

an alternating sequence, i.e.,
Gty ey ) € alt (ZN), for n e N.

Theorem 7.1. Let T be a free reduced word (7.2.2) in the p-adic diagonal
C*- probability space (&,(Z), ¢*). Then

N
kY 1 B 1
0P (T*) = H[—jl MJ, (7.2.3)

1=1 \P p

forall k € N.
Proof. Since T is a free reduced word H ;Z 1 P, il in the p-adic diagonal

C” - probability space (6,(Z), 7) of (7.2.1), we have

p(mk . N * p 5 k
oP(T") equi @ (l®1pp’le =0 (l®1pp,jl]

N N
Y | I k — P | I .
=" [z Pp’le 7 {z Pp,ll],
=1 =1

since P, j are projectionsin &, (z), forall I =1, ..., N

= gP(T)

N N 1 1

_ D ) = _

—l I%(Pp,]z)_l |{ il pjl”}
=1

1=1 \P

since T'is a free reduced word, for all £ € N.
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Remark again the differences between the notation 7% and T® for a
free reduced word T'in &,(Z), for k € N, see NR 7.1.1.

Also, by NR 7.1.1, one has that, if T'is as above, then
T* =T in GP(Z).

Therefore, the free-moment formula (7.2.3) characterizes the free distribution

of free reduced words 7T of (7.2.2) in (&,(Z), ¢7).

Theorem 7.2. Let T, = H 5\_731 P, i be free reduced words (7.2.2) in the
= ’ sl

p-adic  diagonal C*-probability space (6,(Z), %), inducing the

corresponding integer-sequences Jg = (jsl, . jSN ), forall s=1, ..., n, for
S
N, neN. Let
N
I= ZTS € (6,(2), oP), (7.2.4)
s=1

for N e N. If the integer-sequences {Js}é\il are mutually-distinct in Z”, in

the sense that: J, # J,,, whenever s; # sy in {1, ..., n}, then
(o[ 1 1
p(sky -
oP(xF) =] H( P jz+1J : (7.2.5)
s=1\1=1 \P" P

forall k € N.

Proof. Let ¥ be a free random variable (7.2.4) of the p-adic diagonal
C*-probability space (S,(Z), ¢”), where every summand T, is a free

reduced word, forall s =1, ..., n.

Note that, by the assumption that the corresponding integer-sequences

J1, ..., J, are mutually-distinct from each other as sequences, all summands
7y, ..., T, are contained in the mutually-distinct direct summands of &,(Q)
in the sense of (7.1.1). It guarantees that all summands 73, ..., 7,, are free
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from each other in (&,(Z), ¢”). So, the free random variable T of (7.2.4)
forms a free sum in (S,(Z), o).

Therefore, the free sum X satisfies that

. N Y N . N
sk equi{f_ﬁl TSJ = 36—91 T, = S(J_Bl T, equi %,

for all £ € N, because Tsk =T, forall £ e N, forall s =1, ..., N. Thus, one
has

N
0P (2F) = 0P (2) = @p(Z Ts]

s=1

N
= z (Pp (Ts ),
s=1

where ¢”(T,) satisfy (7.2.3), forall s =1, ..., N.
Therefore, the free-moment formula (7.2.5) holds true.

Remark the differences between the notations ¥* and ¥® in & p(Z), for

all £ € N, see NR 7.1.2. Also, by NR 7.1.2, one can have that if X is in the
sense of (7.2.4), then

S =Y in (6,(2), ¢P).

Thus, the above free-moment formula (7.2.5) completely characterizes the

free distribution of free sums X in &, (Z).

7.3. The Adelic-Diagonal C*-Probability Space (&,(Z), ¢). Now, let

(6,(Z), ?) be the p-adic diagonal C” - probability spaces, for all p € P. One

can construct the family

A = {6,(Z) denote (5,(Z), ¢7): p € P} (7.3.1)

of C*-probability spaces.
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Then, one can construct the free product C*-probability space (&,(Z), ¢)
of the family 2 of (7.3.1),

(S,(Z). ) def = . (7.3.2)

€
ie.,

(6p(Z)’ (P) = p:’P 6p(Z)

:[ * GP(Z)7 * (pp)
pPeP peP

pe’P,jeZ( P (P] )’

where &,(Z) = (6,(Z), ¢”) are the p-adic diagonal C”-probability spaces,

and (&, gof) are the j-th p-adic C"- probability spaces, forall p € P, j € Z.

Definition 7.2. The free product C*-probability space (&p(Z), ) of

(7.3.1), satisfying (7.3.2), is called the Adelic-diagonal C*- probability space.

Now, let T be an operator

N N
— — Dl
T = I IPPZ,J'I = I Iocajl, for N e N, (7.3.3)
=1 =1

in the Adelic-diagonal C*-probability space (Sp(Z), ¢). Let

Wy = (p)N,, and Jp = ()N,

be the prime-sequence, respectively, the integer-sequence obtained from the
free reduced word T of (7.3.3).

Theorem 7.3. Let T be an operator (7.3.3) of the Adelic-diagonal
C* - probability space (&p(Z), ¢) of (1.3.1). Assume that either

Wy e alt(PN), or Jp e alt(zV). (7.3.4)
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Then we obtain

N
kY _ 11
o(T )—g{ jz jz+1}’ (7.3.5)

b b
forall k € N.

Proof. By the condition (7.3.4), the given operator T of (7.3.3) is a free
reduced word in (Sp(Z), ¢), by (7.3.2). Since T forms a free reduced word in
Sp(Z), one has

k
k k
T equz[@ sz ”J ®1 sz j e equi T

in 6p(Z), forall k e N.

So, we obtain that

N
o(T*) = o(T) = @{H P, jl]

=1

H‘P (P, jy)

by (7.3.2)

N
:H 11
Ji i+l P
I=1

by b
for all £ € N. Therefore, the free-distributional data (7.3.5) is obtained.

Let T be an operator (7.3.3) in the Adelic-diagonal C”-probability space
(6p(Z), 9), and suppose either the prime-sequence Wy, or the integer-
sequence Jp is an alternating sequence. Then 7 is a free reduced word in

Sp(Z), satisfying

T* =T in &p(2).
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(See NR 7.1.1))

So, the above free-moment formula (7.3.5) characterizes the free
distributions of a free reduced word 7'in Sp(Z).

7.4. Discussion. Let Gp(Z) = (5p(Z), ) be our Adelic-diagonal

C™- probability space (7.3.2). Recall that, by (7.3.5), if T'is a free reduced word
in the sense of (7.3.3) in &p(Z), then

il T
M plt pittt ljz Dy

=1

le.,

oo (T 1 (T 1
o) =1T1] P le(l_p_z)’ (7.4.1)

=1 Pj
for all £ € N.

Recall that an arithmetic function ¢ : N — C is the Euler totient

function, if

(7.4.2)

d)(n)d=ef|{keN|1SkSnand}|,

ged (n, k) =1

where | X | mean the cardinalities of sets X, and gcd means “the greatest

common divisor.”

It is well-know that, ¢ is the Euler totient function (7.4.2), if and only if
1
n)=n 1-—||, forall n e N, 7.4.3
o) =n| T (1-%) c (1.4.3)
peP, pln

where “ p|n” means “p divides n,” or “p 1s a divisor of n.” For instance,
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dq)=qg-1= q(l - éj, forall g € P. (7.4.4)

Also, the Euler totient function ¢ is a multiplicative arithmetic function in

the sense that:
d(ryng) = o(ng)d(ng), (7.4.5)
whenever
ged (ng, no=1,)
for ny, ng € N.

Thus, one can figure out the following relation on our free-distributional
data.

Theorem 7.4. Let T = Hf\il Pplvjl be an operator (7.3.3) in the Adelic-

diagonal C*-probability space Sp(Z) of (7.3.2), and let Wy = (py, ..., PN)

be the corresponding prime-sequence for T in the sense of (7.3.4). Assume that

all the entries py, ..., py of Wp are mutually-distinct from each other in P.

Then there exists np € N, and Np € Q, such that

o(T*) = Npo(ng), for all k € N, (7.4.6)
where ¢ is the Euler totient function.

Proof. Let T be an operator (7.3.3) in the Adelic-diagonal C*-probability
space Gp(Z) and assume that all entries pq, ..., py of the corresponding

prime-sequence Wy € (py, ..., py) for T are mutually-distinct from each

other in P. Then such a mutually-distinctness of {pl}ﬁl guarantees that the

sequence Wy is an alternating sequence, i.e.,
Wr e ali(PN),

and hence, T forms a free reduced word in Sp(Z).
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Thus, one has that

by (7.4.1)

=1
N 1
by (7.4.4), where Np = HH T € Q
by
N
i NN{H pl]
=1
since ¢ is multiplicative in the sense of (7.4.5), because py, ..., py are
mutually-distinct in P
= Npo(ng),
where = HN p; €N
nT =1 () *
Therefore, there exist
N 1 N
Np =HF€Q’ and np =le e N,
=1 ] =1

such that
o(T*) = Npo(ng), forall k e N.

For example, if

T =P 3P 1P 1 € 6p(Z).

Then we obtain that
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o(T")equi (P53 ® Py ®P7,1)k) = (P(Psf—s ®P2k,1 ®P7]f1)€qui O(Ps5 _gPs 1Py 1)

= ¢0°3(P5,_3)01 (Py,1)01 (Pr1)
(1 1 )1 1)1 1
- 5T3 - 57? 2_1 - ZlT 7_1 - 71+

1 1)1 1 150
=025-29(3 (7 55)= 45

by (7.3.5), for all £ € N.

Also, one obtains that: for a fixed free reduced word 7T, since the

corresponding prime-sequence (5, 2, 7) have mutually-distinct entries in P,

one can have that

2
Ny = 5é+1 211+1 711+1 - 225. 72 - 4?459 - %56 nQ,
and
np =5-2-7="70in N,
Note that

Nrpo(ng) = %4)(70) = 2%20 (%) (%) (g) = %),

which demonstrates that

o(T*) = Npo(ny),

for all £ € N.
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