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Abstract 

In this article, a numerical method for solving parabolic inverse problem with an unknown 

time-dependent source parameter is considered. This method is based upon Chebyshev Tau 

approximation and using Chebyshev operational matrix. Such approach has the advantage of 

reducing the problem to the solution of a system of algebraic equations. By solving this system 

of equations, the unknown Chebyshev coefficients can be determined. Numerical results show 

that the proposed method is of high accuracy and is efficient for solving an inverse parabolic 

problem with unknown time dependent parameter. 

1. Introduction 

Parabolic partial differential equations describe a wide range of problems 

in various fields of science including heat diffusion [1], ocean acoustic 

propagation [2], population dynamics [3], dynamics of nuclear reactors [4], 

adsorption of pollutants in soil and the diffusion of neutrons. The parabolic 

partial differential problem is concerned with the calculation of unknown 

solution while the initial and boundary conditions are given. But in the 

inverse parabolic partial differential problem with over specified condition, 

the determination of unknown solution and unknown source term are 

required. Inverse problems (IPs) have been appeared in many important 
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applications in heat transfer, thermoelasticity, control theory, population 

dynamics, nuclear reactor dynamics, medical sciences, biochemistry and etc. 

[5-19]. Most often, the analytical solution for inverse problem is difficult to 

obtain. The important goal in IPs is their solvability and description of a 

constructive algorithm for finding a solution. Several numerical methods 

have been introduced to obtain the solutions of inverse problems, see for 

example [20-37]. In this paper, we consider the inverse problem with an 

unknown time-dependent source parameter. Over the last few years, it has 

become increasingly apparent that many physical phenomena can be 

described in terms of parabolic partial differential equations with source 

control parameters. This type of equations arise, for example, in the study of 

heat conduction processes, thermoelasticity, chemical diffusion and control 

theory [38-41]. Growing attention is being paid to the development, analysis 

and implementation of accurate methods for the numerical solution of 

parabolic inverse problems, i.e. for the determination of unknown function 

 tp  in the parabolic partial differential equations. 

In this paper, we consider the following parabolic equation: 

          ,0,0,,,,,  tLxtxqtxutptxutxu xxt  (1) 

with initial condition 

    ,0,0, Lxxfxu   (2) 

and boundary conditions 

          ,0,,0,0 11  ttgtutxut x  (3) 

          ,0,,, 22  ttgtLuttLut x  (4) 

where             2,1,,,,,,,  itgtttxftxq ii  are known functions. 

If the function  tp  is known, the problem of finding  txu ,  from (1)-(4) is 

called the direct problem. However, the problem here is that the source 

parameter  tp  is unknown, which needs to be determined by energy 

condition 

     
 

 
ts

LtsttEdxtxu
0

,0,0,,  (5) 

where    tstE ,  are given functions. This problem (1)-(5) is called the inverse 

problem. 
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The integral condition (5) can be used as supplementary information in 

the determination of the source parameter. Such type of condition can model 

various physical phenomena in context of chemical engineering [7], heat 

conduction [8], diffusion process [42, 43], thermoelasticity [44], fluid flow in 

porous media [45]. The existence and uniqueness and continuous dependence 

of the solutions to this problem and also some more applications are discussed 

in [5, 20]. In [20], the authors of the Sinc-collocation method for solving 

problems (1)-(5) used on interval  tx 0,10  by   .1ts  

The main concern of this work is to extend the application of the shifted 

Chebyshev-Tau method to numerically solve the equations (1)-(5). We have 

developed some efficient Tau approximations based on a truncated series of 

shifted Chebyshev polynomials together with the Chebyshev operational 

matrices. This approach has the advantage of reducing such problems to the 

solution of a system of algebraic equations. Moreover, we apply the proposed 

algorithm to the numerical examples, in order to confirm the accuracy of this 

algorithm. 

The rest of this article is organized as follows. In section 2 we present 

some necessary definitions and properties of the shifted Chebyshev 

polynomials. In Section 3 we have constructed and developed an algorithm 

for the solution of the inverse problems of parabolic partial differential (1)-(5), 

by using shifted Chebyshev-Tau method. In Section 4, some numerical 

experiments are provided and also a comparison of our method with another 

one has been shown. Finally, the paper ends with some conclusions in Section 

5. 

2. Shifted Chebyshev Polynomial 

In this section, we briefly review some definitions and properties of the 

shifted Chebyshev polynomials which are used further in this paper. 

The shifted Chebyshev polynomials satisfy the following three-term 

recurrence relation: 

    ,1
2

,1 1,0, 
L

x
xTxT LL  

      .,,3,21
2

2 2,1,, njxTxT
L

x
xT jLjLjL 







    (6) 
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The following formula for the j-th degree of  xT jL,  

   
 

   











j

k

k

k

k
kj

jL njx
Lkkj

kj
jxT

0

2

, ,,3,2,1,
!2!

2!1
1   (7) 

where     jjLT 10,   and   .1, LT jL  

The orthogonality condition is 

      
L

jLkLjL hdxxwxTxT
0

,, ,  (8) 

where 

  ,
1

2xxL

xwL


  (9) 

and 

.1;1,2

,,0

,,
2 0 













 j

jk

jkh j

j

j  (10) 

A function  txu ,  of two independent variables defined for  tLx 0,0  

may be expanded into the shifted Chebyshev polynomials as: 

     










0 0

,, .,

i j

jLiij xTtTatxu  (11) 

If the infinite series in (11) is truncated, than it can be written as: 

         
 

 

m

i

n

j

T
jLiijnm xAtxTtTatxu

0 0

,,, ,,   (12) 

where the shifted Chebyshev vectors  t  and  x  and the shifted 

Chebyshev coefficient matrix A are given as: 

         ,,,, ,1,0,
T

m tTtTtTt    

         ,,,, ,1,0,
T

nLLL xTxTxTx   (13) 
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,

10

11110

00100





















mnmm

n

n

aaa

aaa

aaa

A









 

where 

          



0 0

,, ,,
1 L

LjLi
ji

ij dtdxxwtwxTtTtxu
hh

a  

.,,1,0,,1,0 njmi    (14) 

Theorem 1. The first derivative of the shifted Chebyshev vector  x  may 

be expressed as 

     ,1 xD
dx

xd



 (15) 

where  1D  is the    11  nn  operational matrix of derivative given by 

 
 

 


















otherwise

evenisnifnk

oddisnifnk
kij

L

i

dD jij

0

1,,3,1

,,3,1
,

4
1




 (16) 

where ,1,1,20  jj  see [46, 47]. 

For example, for odd n given as: 

   
































02020

00120120

000603

000040

000001

000000

2

nnn

nn

L
D















 

and for even n given as: 
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   
































020020

00121201

000603

000040

000001

000000

2

nn

nnn

L
D















 

Remark 1. The operational matrix for the nth derivative can be derived 

as [24, 46] 

 
     ,1 xD

dx

xd n

n

n




 (17) 

where Nn   and the superscript in  ,1D  denotes matrix powers. Thus 

    .,2,1,1 nDD
nn  (18) 

Theorem 2. The integration of  tm,  may be written as [46, 48] 

    
t

tPtdt
0

,  (19) 

where P is the    11  mm  shifted Chebyshev operational matrix of 

integration and is given by 

,

00000

00000

0000

0000

0000

00000

00000

11

22

333

222

11

00





















































mm

mm

mm

w

w

w

w

w

w

w

p

















 (20) 

where 
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 
   

 

,

,3,2
14

10

0
2

,

,3,2
112

1

1
8

0
2

1



















































 


k
k

k

k

k
kk

k

k

w k

k

k  

 






















 .

,3,2
14

1
8

00

k
k

k

k

k  (21) 

Obviously similar to (19) we have 

    
x

xGxdx
0

,  (22) 

where G is the    11  nn  shifted Chebyshev operational matrix of 

integration and is defined similar to (20). 

3. Shifted Chebyshev-Tau Method 

In this part, we will use the tau approximation together with the shifted 

Chebyshev operational matrix for solving inverse parabolic problems (1)-(5). 

We approximate    txqtxu ,,,  and  xf  by using the shifted Chebyshev 

operational matrix as: 

     ,,, xAttxu T
nm   (23) 

         
 

 

m

i

n

j

T
jLiijnm xQtxTtTqtxq

0 0

,,, ,,   

       ,

0

, xFtxTfxf

n

j

T
jLj



  

where A is an unknown    11  nm  matrix, Q and F are known 

   11  nm  matrices as; 
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0000

0000
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11101

00100

























































 nn

mnmm

n

n ffff

F

qqq

qqq

qqq

Q  (24) 

where 

          


 
0 0

,, ,1,0,,,1,0,,
1 L

LjLi
ji

ij njmidtdxxwtwxTtTtxq
hh

q   (25) 

and 

      
L

LjL
j

j njdxxwxTxf
h

f
0

, .,,1,0,
1

  (26) 

Integrating equation (1) from 0 to t and using equation (2) (see [24, 46]), 

we have 

            
ttt

xx tdtxqtdtxutptdtxuxftxu
000

.,,,,  (27) 

Using equations (12), (17) and (19) we get 

   
 

   ., 2

2

2

00
xADPt

dx

xd
Atdttdtxu TT

t
T

t

xx 












 








   (28) 

The function  tp  may be expanded in terms of 1m  shifted Chebyshev 

series as 

     


 

m

k

T
kk tBtTbtp

0

, ,  (29) 

where  TmbbbB ,,, 10   is an unknown vector. 

Now, using equations (10), (17) and (29) we have 

         .,
00

xAtdttBtdtxutp
t

TT
t









   (30) 

Let 

      ,HtttB TTT   (31) 
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where H is an    11  mm  matrix. To find H, we rewrite equation (31) 

(see [46]) in the form 

     






 

m

k

kjk

m

k

jkk mjtTHtTtTb

0

,

0

,, .,1,0,   (32) 

Multiplying both sides of (32) by     mitwtT i ,,1,0,,   and 

integrating from 0 to  yields 

        






m

k

jkik dttwtTtTtTb

0
0

,,,  

      




 

m

k

ikkj mjidttwtTtTH

0
0

,, .,1,0,,   (33) 

By using equation (33) and employing the orthogonality relation (8) gives 

        




 

m

k

iijjkik hHdttwtTtTtTb

0
0

,,, ,  

or equivalently 

        




 

m

k

jkik
i

ij mjidttwtTtTtTb
h

H

0
0

,,, .,,1,0,,
1

  (34) 

Employing equations (19), (30) and equation (31) can be written as 

        
t

TT xHAPttdtxutp
0

.,  (35) 

Also by using equations (12), (19) and (23) (see [46]), we get 

           









t
TT

t
T xQPtxQtdttdtxq

0 0
.,  (36) 

Applying equations (12), (23), (28), (35) and (36) the residual  txR nm ,,  

for equation (27) can be written as 

        .0, 2
,  xQPADPHAPFAttxR TTTT
nm  
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Let 

 ,2 QPADPHAPFAZ TTT   

than we have 

    .0 xZtT  (37) 

As in a typical Tau method we generate    11  nm  linear algebraic 

equations using the following algebraic equations 

.2,,1,0,,,1,0,0  njmiZij   (38) 

Also, by substituting equations (23) and (29) in equations (3)-(4) we get 

             ,00 11 tgAttADtt TT   (39) 

             .22 tgLAttLADtt TT   (40) 

And applying (20), (23) in equation (5) we have 

      .tEtsAGtT   (41) 

Equations (39)-(41) are collocated at 1m  points. For suitable collocation 

points we use the shifted Chebyshev roots 1,,2,1,  miti   of  .1, tT m  

The number of the unknown coefficients njmiaij ,,1,0,,,1,0,    

and mkbk ,,1,0,   is equal to      111  mnm  and can be 

obtained from equations (38)-(41).Consequently  txu ,  given in equation (12) 

and  tp  given in equation (29) can be calculated. 

4. Numerical Results and Comparisons 

In order to verify the performance and functionality of the proposed 

method, two examples are examined in this section. We also drew a 

comparison between our method and Sinc-collocation method proposed by 

[20]. In this case the exact solution  txu ,  and  tp  to the problem is known, 

we will report the accuracy and efficiency of the new method based on 

absolute errors ue  and pe  defined as: 

        .,,,, tptpetxutxue mpnmu   
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Example 1. Consider the inverse problem (1)-(5) with the input data 

1,1  L  

  ,0, txq  

  ,cos1 xxf   

    ,1sin1sin2
1

2 ttt eettg    

      ,1sin1cos1sin
2

2 tttt eetetg    

1,0,1  ii  

    ,,2 tttt   

    ,1sin1sin2 ttt eetE    

  .1ts  

The exact solution of the problem is     xeetxu ttt cos1, sin2    and 

  ,cos2 tttp   see [20]. 

This problem can be solved by the method described in Section 3. In 

Tables 1, 2 the absolute error between the exact solution and the approximate 

solution shows a new method when 7,5,3 nm  is given and the absolute 

error of the new method and the method given in [20] are also compared. In 

addition, Figure 1 shows the absolute error function    5.0,5.0,5,5 xuxu   

at the interval 10  x  and the absolute error function    tptp 5  in 

the interval 10  t  of the new method. 
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Table 1. Results for  5.0,xu  and the absolute error 

   5.0,5.0,, uxu nm   from Example 1. 

 exact error 

x  5.0,xu  3 nm  5 nm   7 nm  

Our method Sinc-collocation 

method [20] 

 

0.1 1.27477 41099.2   51094.7   3102.6   81056.9   

0.2 1.26756 41021.2   81044.3   3103.3   91032.1   

0.3 1.25564 41066.1   61008.2   3104.5   91031.8   

0.4 1.23911 41042.2   61034.5   3108.2   81044.6   

0.5 1.21815 41099.4   51044.3   3101.4   61082.5   

0.6 1.19296 51088.4   71048.8   4102.5   91047.7   

0.7 1.16379 41097.1   61007.2   4104.8   81024.2   

0.8 1.13093 51089.1   81017.6   3100.2   91089.1   

0.9 1.09472 41008.2   61099.4   3109.4   71074.1   
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Table 2. Results for  tp  and absolute error    tptpm   from Example 1. 

t Exact error    

  tp  3m  5m   7m  

   Our method Sinc-collocation 

method [20] 

 

0.1 – 0.79500 31066.1   41038.3   3106.4   71068.6   

0.2 – 0.58006 31038.1   71068.1   3103.1   91074.6   

0.3 – 0.35533 41010.8   51001.1   3103.2   81003.4   

0.4 – 0.12106 31062.1   51069.2   3103.1   71025.7   

0.5 0.12241 31043.1   51067.1   3105.1   71083.2   

0.6 0.37466 41038.2   51006.4   4104.3   81057.3   

0.7 0.63515 41069.1   51001.1   4107.6   71009.1   

0.8 0.90329 51063.9   71001.3   3104.1   91024.9   

0.9 1.17839 31072.1   51045.2   3107.4   71054.8   

 

Figure 1. Plot of error function    5.0,5.0,5,5 xuxu   at the interval 

10  x  (left) furthermore error function    tptp 5  in the interval 

10  t  (right) from example 1. 
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Example 2. Next, let us consider another inverse problem (1)-(5) with the 

following conditions: 

,1,5.0  L  

           ,3cosexp2exp1sin1, 3222223  ttxttttxxttxq  

  ,cos2 xxxf   

  ,3
1 ttg   

    ,1cosexp1sin 32
2 ttttg   

1,0,0  ii  

    ,1,1  tt  

         tttttttttE sinsincossinsincoscossin   

          ,sin1expsinsinsinexp
3

1 23222332 tttttttttttt   

  .sin ttts   

The exact solution of the problem is     322 cosexpsin, txtxxttxu   

and   ,1 2ttp   see [24]. 

Similarly, this problem can be solved by the present method like Example 

1. Tables 3, 4 the absolute error between the exact solution and the 

approximate solution shows a new method when 7,5,3 nm  is given, 

respectively. Moreover, Figure 2 also shows the absolute error function 

   25.0,25.0,5,5 xuxu   at the interval 10  x  and the absolute error 

function    tptp 5  in the interval 10  t  of the new method. 
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Table 3. Results for  25.0,xu  and the absolute error    25.0,25.0,, xuxu nm   

from Example 2. 

x exact error 

  25.0,xu  3 nm  5 nm  7 nm  

0.1 3.17713 41047.1   51091.3   81070.4   

0.2 3.18684 41009.1   81069.1   101048.6   

0.3 3.18659 51059.2   71024.3   91027.1   

0.4 3.17690 41058.1   61049.3   81021.4   

0.5 3.15861 31029.1   51089.8   51050.1   

0.6 3.13287 41019.5   61003.9   81096.7   

0.7 3.10110 41024.4   61047.4   81084.4   

0.8 3.06501 41023.1   71001.4   81023.1   

0.9 3.02654 41061.6   51058.1   71051.5   

Table 4. Results for  tp  and absolute error    tptpm   from Example 2. 

t exact error   

  tp  3m  5m  7m  

0 1 31041.4   31062.1   61066.1   

0.05 1.0025 31059.4   31022.1   61026.1   

0.10 1.01 31085.5   71006.9   81047.3   

0.15 1.0225 31024.5   51004.9   71054.4   

0.20 1.04104 31083.1   51004.4   71088.3   

0.25 1.0625 21058.7   31022.5   61081.8   
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0.30 1.09 21044.5   61026.4   81075.3   

0.35 1.1225 21015.1   41004.2   61020.2   

0.40 1.16 31082.6   51022.2   71081.6   

0.45 1.2025 21018.8   31019.2   51003.7   

0.5 1.25 21091.9   31013.2   51071.7   

 

Figure 2. Plot of error function    25.0,25.0,5,5 xuxu   at the interval 

10  x  (left) furthermore error function    tptp 5  in the interval 

5.00  t  (right) from example 2. 

From the above examples, we can observe that: 

First, according to Tables 1, 2 the shifted Chebyshev-Tau method has 

higher accuracy than the Sinc-collocation method when they have the same 

number. 

Second, experimental data in Tables 1, 2, 3, 4 shows that the 

approximation accuracy of the shifted Chebyshev-Tau method is gradually 

increased with a rise in terms of the truncated series. 

5. Conclusion 

Determination of an unknown time-dependent control parameter in 

parabolic partial differential equations plays a very important role in many 

branches of science and engineering. In this article, the inverse problem of 

finding the time-dependent heat source together with the temperature in the 

heat equation, under the boundary condition and integral over determination 
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condition has been investigated. An efficient direct solver method is 

developed for solving such problems using the shifted Cheyshev-Tau method. 

The construction of the proposed algorithm is based on the Tau 

approximation in addition to the shifted Chebyshev operational matrix. 

Illustrative numerical examples with satisfactory approximate solutions are 

achieved to demonstrate the accuracy of the present method. The obtained 

approximations of the exact solutions for the test problems make this method 

very attractive and contributed to the good agreement between approximate 

and exact values in numerical examples. 
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